Какие бывают виды компьютерной графики

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы».


Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.

Растровая графика

Можно сказать, что этот вид (тип) компьютерной графики самый распространенный. Залежи кадров с отпусков и миллионы фотографий милейших котят в интернете — все это растровая графика.

Строятся изображения растрового типа по простому принципу, который похож, например, на вышивку крестом. Определенный цвет помещается в назначенную ему ячейку. Если сильно приблизить растровую картинку, то можно увидеть как она разбивается на одинаковые по размеру квадратики, напоминая мозаику. Такое увеличение заметно ухудшает её качество, так как картинка при сильном увеличении делится на видимые квадраты. Этот эффект называется пикселизация, а каждый такой квадратик — точкой, или пикселем.

Растровая графика

Слово «пиксель» произошло от сокращения «Picture element». Пиксель не делится на более мелкие части, имеет однородный цвет и является мельчайшим элементом растрового изображения. Размер точки, пикселя, из множества которых стоит изображение, примерно 0,05 миллиметра.

К достоинствам растровой графики можно отнести ее высокую реалистичность. Минусом может являться то, что если картинка слишком маленькая, то увеличить ее без потери качества просто не получится. Самая популярная программа создания и редактирования растровой графики — Adobe Photoshop.

Примеры

Примеры фрактальной графики распространены от примитивных до очень сложных повторяющихся элементов. Уникальной особенностью данного типа является то, что рисунок можно составить исключительно из восклицательных или вопросительных знаков.

Стандартными, но относительно сложными примерами компьютерной фрактальной графики являются облака, горы, морские побережья и так далее. Их зачастую используют при создании игр.

Самым простым примером можно назвать кривую Коха. Во-первых, она не имеет конкретной длины, и ее называют бесконечной. Во-вторых, здесь полностью отсутствует гладкость. Поэтому невозможно построить касательную.

Уникальные особенности фракталов

Графика фрактальная не имеет аналогов. Она уникальна в своем роде. Во-первых, один ее небольшой участок может рассказать сразу обо всем рисунке или изображении. Информация обо всем фрактале доступна, т.к. он является самоподобным.

В центре любого изображения, относящегося к данному типу графики, располагается равносторонний треугольник. Все остальные детали рисунка являются либо его частями, либо уменьшенными/увеличенными копиями. То есть, в составлении изображения принимает участие один конкретный элемент.

Для того чтобы использовать фрактальную графику, не нужны никакие объекты, хранящиеся в памяти компьютера. Приступить к созданию можно, имея под рукой одну только математическую формулу.

Сходства и различия между фракталом и вектором

Векторная и фрактальная графика очень различаются между собой:

  1. По кодированию изображений. Вектор задействует контуры разных геометрических фигур, фрактал – математическую формулу, в основе которой лежит треугольник.
  2. По применению. Вектор используют везде, где нужно получить четкий контур. Фрактальная графика более специализирована, она нашла свое применение в математике и искусстве.
  3. По аналогам. Векторными аналогами являются слайды или функции на графиках. У фракталов это – снежинки или кристаллы.

Несмотря на многообразие отличительных черт, эти два вида графики объединяет качество изображения. Оно остается неизменным, независимо от уровня масштабирования.

Трехмерная, векторная, растровая, фрактальная графика схожи в одном – все они широко используются в решении различных компьютерных задач. Чтобы получить действительно качественное изображение, нужно задействовать каждую из них.

Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике выпускают антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов. Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие. К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.


Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z2+с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).

Основы фрактальной графики

Что такое фрактальная графика? Это одна или несколько геометрических фигур, каждая из которых подобна другой. То есть, изображение составляется из одинаковых частей.

Само слово «фрактал» может употребляться, если фигура обладает одним или несколькими из этих свойств:

  • Нетривиальная структура. Когда рассматривается небольшая деталь всего изображения, то фрагмент схож со всем рисунком. Увеличение масштаба не приводит к ухудшению. Изображение всегда остается одинаково сложным.
  • Каждая часть рисунка является самоподобной.
  • Имеется математическая размерность.
  • Строится при помощи повторения.

Множество объектов природного или искусственного происхождения наделяются свойствами фракталов. К ним относятся кровеносные системы человека и животного, кроны и корни деревьев и так далее.

Фрактальная компьютерная графика становится популярной потому, что добиться красоты и реалистичности можно посредством простого построения при помощи соответствующего оборудования. Нужно только задать правильную математическую формулу и указать количество повторений.

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Фрактальные антенны

Основная статья: Фрактальные антенны

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику.

Коэн основал собственную компанию и наладил серийный выпуск своих антенн. C тех пор теория фрактальных антенн продолжает интенсивно развиваться.

Преимуществом таких антенн является многодиапазонность и сравнительная широкополосность.

Информатика

Сжатие изображений

Основная статья: Алгоритм фрактального сжатия

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Ещё одно фрактальное дерево

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Литература

  • Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002.
  • Пайтген Х.-О., Рихтер П. Х. Красота фракталов. Образы комплексных динамических систем. — М.: «Мир», 1993.
  • Федер Е. (англ.)русск. Фракталы. — М: «Мир», 1991.
  • Абачиев С. К. О треугольнике Паскаля, простых делителях и фрактальных структурах // В мире науки, 1989, № 9.
  • Фоменко А. Т. Наглядная геометрия и топология. — М.: изд-во МГУ, 1993.
  • Фракталы в физике. Труды 6-го международного симпозиума по фракталам в физике, 1985. — М.: «Мир», 1988.
  • Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. — Ижевск: «РХД», 2001.
  • Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории.
  • Мандельброт Бенуа, Ричард Л. Хадсон. (Не)послушные рынки: фрактальная революция в финансах = The Misbehavior of Markets. — М.: «Вильямс», 2006. — 400 с. — ISBN 5-8459-0922-8.
  • Красивая жизнь комплексных чисел // Hard’n’Soft, № 9, 2002. Стр. 90.
  • М. Г. Иванов, «Размер и размерность» // «Потенциал», август 2006.
  • Липов А. Н. Фракталы. Памяти Бенуа Мандельброта // Философия и культура № 9 (33) 2010. № 8. С. 39-54.

Красота Повтора. Фрактальность Реальности

Фракталы — не просто красивое природное явление. А вы знаете, что при созерцании фракталов в лобной коре головного мозга всего за одну минуту увеличивается активность альфа-волн — как во время медитации или при ощущении легкой сонливости.

Рассматривание фракталов оказывает на человека умиротворяющее воздействие. Всем нравится смотреть на облака, на языки пламени в камине, на листву в парке…

Ученые предполагают, что естественный ход поисковых движений наших глаз тоже фрактален. При совпадении траектории движения глаз и фрактального объекта мы впадаем в состояние физиологического резонанса, за счет чего активизируется деятельность определенных участков мозга.

Фракталы выходят за рамки чистой математики. Они могут дать гораздо больше: например, объяснить явления, находящиеся вне нашего понимания при текущем развитии науки.

Вся фрактальная космология строится на теории бесконечности пространства Вселенной и распределении в нем астрономических объектов по принципу фрактальной размерности.

Фрактальность является одним из самых важных принципов Мироздания, в котором процессы повторяются на различных уровнях.

Для примера рассмотрим хорошо нам знакомую, но мало понятую систему — планету Земля. У неё, как и у человека, тоже есть кровь – вода, есть легкие – деревья, и есть вены – реки. Роль её печени играют камни и песок, через который фильтруются загрязнения и круговорот воды в природе, который отделяет молекулы воды от микро мусора.

Сама же Земля является носителем огромного количества маленьких открытых систем — растения, животные, насекомые, земноводные, человек. И эти системы постоянно взаимодействуют друг с другом.

Человеческое сообщество также организовано в системы – семьи, роды, нации. Эти системы управляются сверх-системами — различными эгрегориальными структурами.

Все вместе эти системы образуют уровни нашей цивилизации, на каждом из которых есть свои правила и механизмы взаимодействия.

__________________________________________________________________________


«Фрактальная геометрия природы» Бенуа Мандельброт

Фото фракталов и описаний к ним от Романа Уфимцева

Информация от digitall_angell

_______________________________________________________

Возможно вам будут интересны следующие статьи:

  • Ловушки Мышления. Чёрно-белое Мышление
  • Вирус — Перестройка Мира и Пробуждение Духа
  • Самореализующееся Пророчество
  • Ложь. Эмоции. Отношения
  • Смирение. Принятие. Просветление
  • Жизненные Ценности. Носитель и сообщение
  • Сакральная Геометрия
  • Чувство Собственной Значимости
  • Человек Осознанный — аудиокнига
  • Уровни Развития Сознания
  • Сопротивление Жизни
  • Духовная Гордыня
  • Энергия Мысли, или как Вселенная общается с нами
  • Генетическая Травма

Программы для генерации

Нет такого человека, которого бы не привлекала фрактальная графика. Программы, участвующие в ее создании, представлены в большом количестве. Поэтому надо разобраться в наиболее подходящих для новичков.

Продукт Art Dabbler представляет собой лучший вариант, если пользователь раньше не имел дело с его аналогами. Здесь можно не только освоить графику, но и научиться рисовать на компьютере. К другим преимуществам следует отнести небольшое количество занимаемой памяти и интуитивно понятный интерфейс.

Другая программа – Ultra Fractal. Она уже ориентирована на работу профессионалов, новичкам сложно будет в ней разобраться. Интерфейс здесь достаточно сложный, но производители выполнили его на примере обычного Photoshop. Если пользователь имел дело с этой программой, то в кнопках разберется быстро. Особенность Ultra Fractal заключается в том, что здесь выполняется не только графика фрактальная в качестве стандартного и обычного изображения, но и анимация. Формулы для составления прилагаются, но при необходимости пользователь сможет задействовать свою.

Другие действия с фрактальной графикой

После того как элемент фрактальной графики был создан, с ним можно производить различные дополнительные действия:

  • Повороты и растяжения. Так увеличиваются отдельные детали рисунка, либо они принимают нужную пользователю форму.
  • Группирование объектов. Обычно эта функция применяется для того, чтобы назначить требуемый масштаб.
  • Преобразование цветов. Изображение можно окрасить в любой оттенок, задать тон.
  • Изменение формы всего объекта или отдельных деталей.

Нужно помнить, что изображения фрактальной графики в конечном итоге предсказать невозможно. Когда треугольник слишком увеличивается, то просмотр будет нереальным, пользователь увидит только черное окно. Когда желаемая текстура обнаружена, все изменения с ней нужно проводить в минимальном порядке, постоянно сохраняя допустимый вариант.

Как создать элемент фрактальной графики?

Создание фрактальной графики будет различаться в зависимости от ее классификации: геометрическая, алгебраическая или стохастическая. Несмотря на разницу, итог всегда будет одинаковым. Поскольку фрактальная графика начинается с геометрии, то следует рассмотреть ее создание на соответствующем примере:

  1. Задают условие. Это фигура, на основе которой будет строиться все изображение.
  2. Задают процедуру. Она преобразует условие.
  3. Получают геометрический фрактал.

Обычно нулевое условие представляется в виде треугольника.

Чтобы построить изображение, нужно применить две процедуры. Во-первых, DrawTriangle. Она строит треугольник по точкам, заданным пользователем. Во-вторых, DrawGenerator. Она указывает количество точек. Каждая процедура может повторяться несколько раз или бесконечно долго. Для определения этого показателя применяется численный аргумент n.

Плюсы и минусы

Свое распространение совсем недавно заполучила фрактальная графика. Достоинства и недостатки ее слишком размыты, поскольку отсутствует нормальная теоретическая база. Терминология и принципы ее использования до конца не изучены, несмотря на то, что они действенные и рабочие.

Достоинства фрактальной графики заключаются в нескольких факторах:

  1. Небольшой размер при масштабном рисунке.
  2. Нет конца масштабированию, сложность картинки можно увеличивать бесконечно.
  3. Нет другого такого же инструмента, который позволит создавать сложные фигуры.
  4. Реалистичность.
  5. Простота в создании работ.

Недостатки фрактальной графики тоже присутствуют. Во-первых, без компьютера здесь не обойтись. Причем, чем длиннее количество повторений, тем больше загружается процессор. Соответственно, только качественное компьютерное оборудование способно справиться с построением сложных изображений.

Во-вторых, присутствуют ограничения в исходных математических фигурах. Некоторые изображения создать посредством фракталов не удастся.

Основы фрактальной графики

Что такое фрактальная графика? Это одна или несколько геометрических фигур, каждая из которых подобна другой. То есть, изображение составляется из одинаковых частей.

Само слово «фрактал» может употребляться, если фигура обладает одним или несколькими из этих свойств:

  • Нетривиальная структура. Когда рассматривается небольшая деталь всего изображения, то фрагмент схож со всем рисунком. Увеличение масштаба не приводит к ухудшению. Изображение всегда остается одинаково сложным.
  • Каждая часть рисунка является самоподобной.
  • Имеется математическая размерность.
  • Строится при помощи повторения.

Множество объектов природного или искусственного происхождения наделяются свойствами фракталов. К ним относятся кровеносные системы человека и животного, кроны и корни деревьев и так далее.

Фрактальная компьютерная графика становится популярной потому, что добиться красоты и реалистичности можно посредством простого построения при помощи соответствующего оборудования. Нужно только задать правильную математическую формулу и указать количество повторений.

Уникальные особенности фракталов


Графика фрактальная не имеет аналогов. Она уникальна в своем роде. Во-первых, один ее небольшой участок может рассказать сразу обо всем рисунке или изображении. Информация обо всем фрактале доступна, т.к. он является самоподобным.

В центре любого изображения, относящегося к данному типу графики, располагается равносторонний треугольник. Все остальные детали рисунка являются либо его частями, либо уменьшенными/увеличенными копиями. То есть, в составлении изображения принимает участие один конкретный элемент.

Для того чтобы использовать фрактальную графику, не нужны никакие объекты, хранящиеся в памяти компьютера. Приступить к созданию можно, имея под рукой одну только математическую формулу.

Фракталы. Красота Природы

Принцип фрактальности заложен в устройстве самой Природы, где из одного семени или из одной клетки путём многократного дробления создаётся новая структура, похожая, но не идентичная первоначальной.

Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Природа сама создана из самоподобных фигур, просто мы этого не замечаем.

Человек тоже весь построен на основе фракталов: кровеносные сосуды, лёгкие, бронхи имеют фрактальную природу. Посмотрите через увеличительное стекло на свою кожу, и вы увидите фракталы.

Примеров фракталов можно привести массу, потому что, они окружают нас повсюду. Самыми интересными, простыми и популярными фрактальными свойствами в природе обладают — кроны деревьев, цветная капуста, облака, кровеносная система человека и животных, кристаллы, снежинки, горные хребты, берега рек, морозные узоры на стекле, многие растения и морские раковины…

Галактика и Вселенные тоже фракталы и обладают свойством самоподобия. Например, Планеты объединяются в Планетарные Системы, Планетарные Системы — в Галактики, Галактики — в Кластеры, Кластеры — в Суперкластеры и так далее до бесконечности. Вселенная складывается, как матрёшка, и все её составные части выглядят примерно так же.

Человек — это фрактал Вселенной — микрокосмос, разумная клетка Вселенной, которая способна включиться в активную работу, используя свои уникальные данные, записанные во фрактальной структуре человеческой ДНК.

Всё, что окружает нас, ближний и дальний Космос, являются фракталом. Мы с вами тоже. Бесконечное самоподобие. И если понять принцип фрактальности — открывается огромнейший горизонт для нового взгляда на мир и на место человека в нём.

Существующие форматы

Форматы фрактальной графики определяют форму и способ хранения файловых данных. Некоторые из них включают в себя большой объем информации. Поэтому их необходимо сжимать. Причем делать это не посредством архивирования, а непосредственно в файле. Если правильно его выбрать, то сжатие будет происходить автоматически. Есть несколько алгоритмов этой процедуры.

Если перед пользователем аппликация, большая часть которой выдержана в одном цвете, то разумно использовать форматы BMP и PCX. Здесь заменяется последовательность повторяющихся величин.

Диаграмму, которая очень редко, но все-таки используется во фрактальной графике, логично поместить в TIFF или GIF.

Часть форматов является универсальной. То есть, их можно просмотреть в большинстве редакторов. Но если пользователю важна качественная обработка изображений, тогда нужно применять оригинальную программу.

Форматы фракталы не поддерживаются браузерами. Именно поэтому осуществляется их преображение, если есть необходимость загрузить на тот или иной сайт.

Заключение

Графика фрактальная очень реалистична. Происходит это потому, что ее детали и элементы постоянно встречаются в окружении человека – горы, облака, морские берега, различные природные явления. Часть из них остается постоянно в одном и том же состоянии, вроде деревьев, каменистых участков. Остальные же непрерывно меняются, как мерцающее огненное пламя или кровь, двигающаяся по сосудам.

Развитие фрактальных технологий на сегодняшний день – одна из прогрессирующих областей науки. Она используется не только в компьютерной графике. Возможно, если ученым удастся докопаться до их сути, человек начнет намного лучше понимать этот мир.

Заключение

Графика фрактальная очень реалистична. Происходит это потому, что ее детали и элементы постоянно встречаются в окружении человека – горы, облака, морские берега, различные природные явления. Часть из них остается постоянно в одном и том же состоянии, вроде деревьев, каменистых участков. Остальные же непрерывно меняются, как мерцающее огненное пламя или кровь, двигающаяся по сосудам.

Развитие фрактальных технологий на сегодняшний день – одна из прогрессирующих областей науки. Она используется не только в компьютерной графике. Возможно, если ученым удастся докопаться до их сути, человек начнет намного лучше понимать этот мир.


С этим читают