Правда ли, что зимой в воздухе меньше кислорода?

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды — 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

С точки зрения физиологии человека «космос» начинается уже на высоте около 19—20 км. На этой высоте давление атмосферы снижается до 47 мм рт. ст. и температура кипения воды равна температуре тела — 36,6 °C, что приводит к кипению воды и межтканевой жидкости в организме человека. Вне герметичной кабины на этих высотах смерть наступает почти мгновенно.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и другие.

В разрежённых слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км, знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (то есть с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

Круговорот азота

Рис. 100. Клубеньковые бактерии на корнях бобового растения

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве солями угольной кислоты, например с СаСО3, образует селитру: 2HNО3+CaCО3 = Ca(NО3)2 + CО2+H2О


Некоторая же часть органического азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа и т. д. Кроме того, существуют бактерии, которые при недостаточном доступе кислорода могут отнимать кислород от солей азотной кислоты, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть связанного азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот).

Таким образом, круговорот азота в природе, входивший в состав погибших растений, возвращается не весь обратно в почву; часть его постоянно выделяется в свободном виде и, следовательно, теряется для растений, Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на земле, если бы не существовали в природе процессы, возмещающие потери азота.

К числу таких процессов относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество окислов азота; последние с водой дают азотную кислоту, превращающуюся в почве в селитры. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот.

Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий — «клубеньков», почему они и получили название клубеньковых бактерий (рис. 100). Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения в свою очередь превращают последние в белки и другие сложные вещества. Поэтому бобовые растения в отличие от остальных могут прекрасно развиваться на почвах, почти не содержащих азотных соединений.

Рис. 101. Схема круговорота азота в природе

Деятельность бактерий, усваивающих атмосферный азот, является главной причиной того, что количество связанного азота в почве остается более или менее постоянным, несмотря на потери, происходящие при разложении азотных соединений. Это разложение возмещается новым образованием азотных соединений, и таким образом круговорот азота в природе совершается непрерывно (рис. 101).

Вы читаете, статья на тему Круговорот азота в природе

Соединения азота

Свободный азот при обычных температурах химически инертен; при высокой температуре вступает в соединение со многими элементами.

С водородом азот образует ряд соединений, основными из которых являются следующие:

1. Аммиак (см.). Азот, входящий в состав аммиака, принято называть аммиачным азотом. В санитарно-гигиенической практике определение аммиачного азота производят при исследовании питьевых вод, при изучении процессов гниения белковых веществ (в частности, мяса и рыбы) и так далее.

2. Гидразин (N2H4) — бесцветная, дымящая на воздухе жидкость. С кислотами образует соли гидразина, например, с соляной кислотой — хлористый гидразоний (N2H4-HCl). Применяется как сильный восстановитель

Органические соединения гидразина имеют важное значение для характеристики Сахаров (см. Углеводы).

3. Азотистоводородная кислота (HN3) — бесцветная, кипящая при t° 37° жидкость с резким запахом. Взрывается с большой силой при нагревании. В водных растворах устойчива и проявляет свойства слабой кислоты. Соли ее — азиды — неустойчивы и взрываются при нагревании или ударе. Азид свинца Pb(N3)2 применяется в качестве детонатора. Вдыхание паров HN3 вызывает сильную головную боль и раздражение слизистых оболочек.

С кислородом азот образует пять окислов.

1. Закись азота, или веселящий газ (N2O), — бесцветный газ, получают при нагревании (выше 190°) азотнокислого аммония:

NH4NO3 = N2O + 2H2O. В смеси с кислородом закись азота применяют как слабый наркотик, вызывающий состояние опьянения, эйфории, притупление болевой чувствительности. Применяется для ингаляционного наркоза (см.).

2. Окись азота (NO) — бесцветный газ, плохо растворимый в воде; в лабораториях получают действием азотной кислоты средней концентрации на медь:

8HNO3 + 3Cu = 2NO + 3Cu (NO3)2 + 4H2O, в технике — продуванием воздуха через пламя электрической дуги. На воздухе мгновенно окисляется, образуя красно-бурые пары двуокиси азота; вместе с последней вызывает отравления организма (см. ниже — Профессиональные вредности соединений азота).

3. Двуокись азота (NO2) — красно-бурый газ, имеющий характерный запах и состоящий из собственно двуокиси А. и ее бесцветного полимера — четырехокиси азота (N2O4) — азотноватого ангидрида. Двуокись азота легко сгущается в красно-бурую жидкость, кипящую при t° 22,4° и затвердевающую при t° — 11° в бесцветные кристаллы. Растворяется в воде с образованием азотистой и азотной кислот:

2NO2 + H2O = HNO2 + HNO3.

Является сильным окислителем и опасным ядом. Двуокись азота образуется при получении азотной кислоты, при реакциях нитрования, травлении металлов и тому подобное и поэтому представляет собой профессиональный яд.

4. Трехокись азота, ангидрид азотистой к-ты (N2O3), — темно-синяя жидкость, затвердевающая при t° — 103° в голубые кристаллы. Устойчива лишь при низких температурах. С водой образует слабую и непрочную азотистую кислоту, со щелочами — соли азотистой кислоты — нитриты.

5. Пятиокись азота, ангидрид азотной к-ты (N2O5), — бесцветные призматические кристаллы, имеющие плотность 1,63, плавящиеся при t° 30° в желтую, слегка разлагающуюся жидкость; разложение усиливается при нагревании и при действии света. Температура кипения около 50°. С водой образует сильную, довольно устойчивую азотную кислоту, со щелочами — соли этой кислоты — нитраты.

При нагревании азот непосредственно соединяется со многими металлами, образуя нитриды металлов, например Li3N, Mg3N2, AlN и др. Многие из них разлагаются водой с образованием аммиака, например

Mg3N2 + 6H2O = 2NH3 + 3Mg(OH)2.

Азот входит в состав большого числа органических соединений, среди которых особое значение имеют алкалоиды, аминокислоты, амины, нитросоединения, цианистые соединения и наиболее сложные природные соединения — белки.

Фиксация атмосферного азота. В течение долгого времени исходными веществами для получения разнообразных соединений азота, необходимых для сельского хозяйства, промышленности и военного дела, служили природная чилийская селитра и аммиак, получаемый при сухой перегонке каменного угля. С истощением залежей чилийской селитры человечеству грозил «азотный голод». Проблема азотного голода была разрешена в конце 19 и начале 20 века путем разработки ряда промышленных методов фиксации атмосферного азота. Наиболее важным из них является синтез аммиака по схеме:

N2 + 3H2 <-> 2NH3

(см. Аммиак).

Молекула — воздух

Построение фронта волны методом Гюйгенса ( для пульсирующего баллона.  

Молекулы воздуха не выстраиваются в некий стройный ряд, где все связывающие их пружинки действовали бы строго в одном направлении. Поэтому если бы удалось заморозить воздух, в котором распространяется звуковая волна, и прямо в середину участка сгущения ввести прибор для измерения давления, обладающий направленным действием, то, как бы мы ни поворачивали прибор во всех направлениях, его показание осталось бы неизменным.  

Молекула воздуха при температуре 25 С и давлении 760 мм рт. ст., двигаясь со средней скоростью 450 м / сек, успевает между двумя последовательными столкновениями пролететь около 7 — Ю-6 см. Если в воздухе отсутствует струйное, макроскопическое движение, то сколько примерно времени понадобится молекуле, чтобы удалиться на 1 см от точки, в которой она находится в данный момент времени.  

Молекула воздуха при температуре 25 С и давлении 760 мм рт. ст., двигаясь со средней скоростью 450 м / сек, успевает между двумя последовательными столкновениями пролететь около. Если в воздухе отсутствует струйное, макроскопическое движение, то сколько примерно времени понадобится молекуле, чтобы удалиться на 1 см от точки, в которой она находится в данный момент.  

Молекулы воздуха, диффундирующие из откачиваемого объема в область завесы, увлекаются парами масла в область форвакуума и удаляются. Обратная диффузия практически невозможна, так как молекулы воздуха испытывают многократные соударения с молекулами пара и не способны длительно двигаться навстречу паровым струям.  

Молекулы воздуха в некоторых случаях приобретают отрицательный заряд.  

Поэтому молекулы воздуха создают результирующее давление на зачерненную поверхность крылышка, складывающееся с давлением света. Радиометрический эффект может привести к тому, что в опыте давление на зачерненное крылышко окажется больше давления на зеркальное крылышко тех же размеров.  

Принцип работы ионизационного вакуумметра.  

Здесь молекула воздуха получает один отрицательный электрон и снова становится нейтральной. Вследствие этого образуется поток электронов от пластины, который можно измерить ( в микроамперах) и тем самым узнать о степени вакуума. Степень ионизации и, следовательно, поток электронов, идущий от пластины, прямо пропорционален количеству молекул воздуха в вакуумметре. Чем глубже вакуум, тем меньше молекул воздуха находится в приборе и тем меньше ток, идущий от пластины.  

Принцип работы ионизационного вакуумметра.  

Здесь молекула воздуха получает один отрицательный электрон и снова становится нейтральной. Вследствие этого образуется поток электронов от пластины, который можно измерить IK микроамперах. Степень ионизации и, следовательно, поток электронов, идущий от пластины, прямо пропорционален количеству молекул воздуха в вакуумметре. Чем глубже вакуум, тем меньше молекул воздуха находится в приборе и тем меньше ток, идущий от пластины.  

Сколько молекул воздуха выходит из комнаты объемом V0 120 м3 при повышении температуры от tl 15 С до гг 25 С.  

Удары молекул воздуха, совершающих тепловое движение, приводят к тому, что угол поворота зеркальца испытывает хаотические колебания вблизи положения механического равновесия. Фактически это то же броуновское движение, которое отличается от рассмотренного в § 1 движения взвешенной в жидкости частицы только тем, что здесь рассматривается не поступательное, а вращательное движение вблизи устойчивого, а не безразличного положения равновесия. Интенсивность такого движения зависит от температуры, оно принципиально неустранимо и ставит предел чувствительности измерительной аппаратуры.  

Сколько молекул воздуха содержится в баллоне вместимостью 60 л при температуре 27 С и давлении 5 103 Па. Чему равна масса одной мэлекулы воздуха.  

Число молекул воздуха в нем при атмосферном давлении.  

Молекулы воздуха и других газов

Обособленные небольшие группы слипшихся атомов всех сложных веществ принято называть молекулами.

Их ещё можно называть элементарными частицами сложных веществ.

Обратим особое внимание на обособленность молекул; она означает, что молекулы как-то разделены между собой. Наиболее наглядно это выражено в воздухе, окружающем нас

В нём его элементарные частицы удалены друг от друга

Наиболее наглядно это выражено в воздухе, окружающем нас. В нём его элементарные частицы удалены друг от друга.

Вызвано это тем, что, плавая в эфире, частицы создают в нём вокруг себя волны, отталкивающие соседние молекулы. Такие волны называются тепловыми, и вызваны они тепловыми, струнными колебаниями атомов.

Итак, воздух представляет собой сплошной эфир, наполненный отдельными молекулами. (Их можно сравнить с рыбками, плавающими в аквариуме.)


Какими молекулами наполнен воздух?

Прежде всего это – молекулы азота; их – больше всего. Они состоят из спаренных атомов азота (N2).

Очень много в воздухе молекул кислорода. Каждая из них представляет собой также пару слипшихся атомов кислорода (O2).

Есть там и молекулы водорода. Они – такие же, из спаренных атомов (H2 = Hm).

Из сложных молекул воздуха можно упомянуть молекулы пара. Каждая из них состоит из атома кислорода с прилипшей к нему молекулой водорода (OHm).

Заметим, что сложные молекулы могут состоять из более простых.

Это подтверждается и молекулой углекислого газа (он образуется во время горения); в нём каждая молекула состоит из слипшихся атома углерода  и молекулы кислорода —  (CO2).

В малых количествах в воздухе содержатся самые разнообразные молекулы органических веществ – продуктов переработки и сжигания каменного угля и нефти. Мы их чувствуем и различаем по запаху. Это – молекулы испарений бензина, керосина, машинных масел.

К органическим веществам относятся все ароматические продукты; приятный запах свидетельствует о наличии в воздухе молекул их испарений.

Молекулы органических веществ – очень большие; они могут состоять из десятков и даже сотен атомов.

Кроме отдельных молекул, в воздухе постоянно находятся и другие скопления атомов. Это – мелкие капельки тумана (облака состоят из них) и пыль твёрдых веществ. Их молекулами называть не принято; они сами состоят из молекул.

В газообразном состоянии находится не только воздух, но и многие продукты химической промышленности. Некоторые из них представляют собой однородные газы, состоящие из одного вида молекул.

К ним относятся хлор, сероводород, сернистый газ, аммиак, метан и другие.

Молекула хлора, как и большинства газообразных простых веществ, представляет собой спаренные атомы – Cl2. (Хлор – жёлто-зелёный газ с резким удушающим запахом.)


Молекула сероводорода состоит из слипшихся атома серы и молекулы водорода – SHm. (У сероводорода – отвратительный запах протухших яиц.)

Молекула сернистого газа образуется при слипании атома серы с молекулой кислорода – SO2. (Сернистый газ – бесцветный, с резким запахом.)

 В молекуле аммиака к одному атому азота присоединены отдельно три атома водорода – NH3; водород здесь – не молекулярный, а атомарный. (Аммиак пахнет мочевиной.)

Состав молекулы метана: один атом углерода и четыре атома водорода — CH4. В атомарном виде находятся там только два атома водорода; другие два – в виде молекулы Hm; поэтому молекулу метана можно представить как HmCH2. (Метан – газ без цвета и запаха.)

Говоря о молекулах, ещё раз отметим, что в газообразных веществах они представляют собой отдельные частицы, состоящие из нескольких атомов.

Воздух, роль и значение воздуха:

Воздух – смесь газов главным образом из азота и кислорода – 98-99 % в сумме, а также аргона, углекислого газа, водорода, образующая земную атмосферу.

В России действует Федеральный закон от 04.05.1999 № 96-ФЗ «Об охране атмосферного воздуха», которым дано понятие атмосферного воздуха.

Атмосферный воздух – жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений. Атмосферный воздух является жизненно важным компонентом окружающей среды, неотъемлемой частью среды обитания человека, растений и животных.

Воздух окружает планету Земля, образуя атмосферу планеты. Он удерживается гравитацией Земли. Атмосфера Земли защищает жизнь на земле, создавая давление, позволяющее жидкой воде существовать на поверхности Земли, поглощая вредное ультрафиолетовое солнечное излучение, нагревая поверхность за счет удержания тепла (парниковый эффект) и уменьшая перепады температур между днем и ночью (суточное изменение температуры).

Воздух необходим для нормального существования на Земле живых организмов. Без воздуха невозможна жизнь человека

Для человека жизненно важной составной частью воздуха является кислород. Кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы)

Если без еды человек может продержаться несколько недель, без воды – несколько дней, то без воздуха – только несколько минут (1 минуту – обычный человек и 5 минут – тренированные ныряльщики).

Общая масса воздуха на Земле составляет 5,13․1015 т и оказывает на поверхность Земли давление, равное на уровне моря в среднем 1,0333 кг на 1 см3.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера. На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера. Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N2{\displaystyle {\ce {N2}}} обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом O2{\displaystyle {\ce {O2}}}, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2{\displaystyle {\ce {N2}}} выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO{\displaystyle {\ce {NO}}} в верхних слоях атмосферы.

Азот N2{\displaystyle {\ce {N2}}} вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами — растениями, которые не истощают, а обогащают почву естественными удобрениями.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и другом. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Основные статьи: Геохимический цикл углерода и Углекислый газ в атмосфере Земли

Содержание в атмосфере CO2{\displaystyle {\ce {CO2}}} зависит от вулканической деятельности и химических процессов в земных оболочках, от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4⋅1012 тонн) образуется за счёт углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.

Содержание углекислого газа в атмосфере зависит также от растворимости газа в воде океанов, что в связано с температурой воды и ее кислотностью.

Инертные газы

Источниками инертных газов являются вулканические извержения и распад радиоактивных элементов. Земля в целом, и атмосфера в частности, обеднены инертными газами по сравнению с космосом и некоторыми другими планетами. Это относится к гелию, неону, криптону, ксенону и радону. Концентрация же аргона, напротив аномально высока и составляет почти 1 % от газового состава атмосферы. Большое количество данного газа обусловлено интенсивным распадом радиоактивного изотопа калий-40 в недрах Земли.

Как защититься от коронавируса

Главная рекомендация экспертов ВОЗ — следить за чистотой рук. Именно с рук вирус чаще всего попадает на слизистые человека, когда вы прикасаетесь к глазам, губам или носу. Поэтому следует как можно чаще тщательно с мылом мыть руки или обрабатывать их спиртосодержащими антисептическими растворами. Примерно за полминуты спиртовой раствор разрушает белковую оболочку коронавируса.

Вопреки слухам, вирус слабо передаётся через заражённые деньги — банкноты и монеты. Но такая вероятность остаётся, поэтому если работаете с деньгами, почаще мойте руки, а по возможности — используйте бесконтактные банковские карты.

Плохая новость ждёт гурманов. Эксперты ВОЗ крайне не рекомендуют есть сырые мясо и рыбу. На время эпидемии придётся забыть о суши, сашими, карпаччо и тартаре.


Источником заражения может стать экран вашего смартфона — сенсорные панели служат отличным инкубатором бактерий и вирусов. Поэтому регулярно протирайте телефон спиртовыми салфетками. Не доставайте смартфон в транспорте и общественных местах, если нужно позвонить — используйте беспроводную гарнитуру. В офисе телефон лучше спрятать в чехол — это защитит экран от чихающих коллег.

Состав

Атмосфера Земли возникла в результате двух процессов: испарения вещества космических тел при их падении на Землю и выделения газов при вулканических извержениях (дегазация земной мантии). С выделением океанов и появлением биосферы атмосфера изменялась за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.

Состав сухого воздуха

В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O{\displaystyle {\ce {H2O}}}) и углекислого газа (CO2{\displaystyle {\ce {CO2}}}), концентрация которого растет с середины XIX века.

Состав сухого воздуха
Газ Содержание по объёму, % Содержание по массе, %
Азот 78,084 75,51
Кислород 20,946 23,14
Аргон 0,934 1,3
Углекислый газ 0,03 — 0,04 0,05
Неон 1,818⋅10−3 1,2⋅10−3
Гелий 5,24⋅10−4 8⋅10−5[источник не указан 636 дней]
Метан 1,7⋅10−4 — 2⋅10−4
Криптон 1,14⋅10−4 2,9⋅10−4
Водород 5⋅10−5 3,5⋅10−6
Ксенон 8,7⋅10−6 3,6⋅10−5

Содержание воды в атмосфере (в виде водяных паров) колеблется от 0,2 % до 2,5 % по объёму, и зависит в основном от широты.

Кроме указанных в таблице газов, в атмосфере содержатся N2O{\displaystyle {\ce {N2O}}} и другие оксиды азота (NO2{\displaystyle {\ce {NO2}}}, NO{\displaystyle {\ce {NO}}}), пропан и другие углеводороды, O3{\displaystyle {\ce {O3}}}, Cl2{\displaystyle {\ce {Cl2}}}, SO2{\displaystyle {\ce {SO2}}}, NH3{\displaystyle {\ce {NH3}}}, CO{\displaystyle {\ce {CO}}}, HCl{\displaystyle {\ce {HCl}}}, HF{\displaystyle {\ce {HF}}}, HBr{\displaystyle {\ce {HBr}}}, HI{\displaystyle {\ce {HI}}}, пары Hg{\displaystyle {\ce {Hg}}}, I2{\displaystyle {\ce {I2}}}, Br2{\displaystyle {\ce {Br2}}}, а также многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль). Самым редким газом в Земной атмосфере является Rn{\displaystyle {\ce {Rn}}}.

Тропосфера:

Тропосфера – это первый, самый нижний слой атмосферы – «придонный», в котором обитает все живое на планете: человек, животные, растения. Тропосфера простирается на несколько километров: возле полюсов его высота не превышает 8-10 км, а в районе экватора достигает 18 км. Такая разность в высоте атмосферы обусловлено центробежной силой Земли и тем, что ширина планеты неодинакова в разных ее частях (Земля имеет эллиптическую форму). Еще один фактор, влияющий на величину слоя – сезон, т.е. температурный режим. В теплое время года воздушные массы поднимаются выше, в холодное – опускаются к поверхности планеты, тем самым увеличивая или уменьшая ширину тропосферы.

Свое название слой получил от древнегреческих слов τρόπος  – «поворот, изменение» и σφαῖρα – «шар». Первая часть слова полностью соответствует основным критериям тропосферы – подвижности, изменчивости, динамичности, формирующих все те явления, которые принято называть «климат» и «погода». Это:

– образование облаков;

– циркуляция жидкости;

– образование циклонов, антициклонов;

– генерация ветров.

Тропосфера – самый тяжелый слой, т.к. в нем содержится 80% массы атмосферы, 50% всех газов и практически вся влага, что позволяет обитателям тропосферы «дышать». Удерживает он и тепло, сохраняя поглощаемые Землей солнечные лучи, поэтому при удалении от ее поверхности понижаются и давление, и температура. Причем температура понижается на 0,5-0,7 градуса Цельсия каждые 100 метров. Также с набором высоты усиливается ветер: на каждый километр высоты его скорость растет на 2-3 км/с. Примечательно, что снижение температуры характерно только для нижнего слоя (тропосферы), во всех же иных она растет по мере приближения к верхним границам.

На нижней границе, возле литосферы, находится еще один барьер: приземной пограничный слой, самый важный для циркуляции всей атмосферы. Именно здесь происходит отдача тепловой энергии и излучения планетой, создаются перепады давления и ветряные потоки, позже разделяемые и направляемые неровностями поверхности (горами, скалами и т.д.).

Верхним пределом тропосферы является тропопауза – промежуточный барьер между тропосферой и следующим слоем атмосферы – стратосферой.

Нормальным давлением у нижней границы тропосферы принято считать показатель в 1000 миллибар, который максимально приближен к эталону – 1013 миллибар (одна «атмосфера»). У верхнего слоя давление составляет уже 200 мБар, а при удалении от уровня моря на 45 км падает до 1 мБара.

За тропосферой и тропопаузой следует следующий слой атмосферы – стратосфера. В тропопаузе прекращается снижение температуры воздуха с возрастанием высоты.


С этим читают