Все, что вам нужно знать о ретроградном меркурии

Интересные факты о Меркурии

  1. Обладает льдом и органическими веществами


Несмотря на свою близость к звезде и крайне высокий температурный показатель, льду удается сохраниться на дне затененных кратеров Меркурия. Также на поверхности находили и органику. Атмосферы не хватает, чтобы обеспечить защиту или удерживать тепло, поэтому жизни нет. Но можно отыскать небольшое количество серы.

  1. Водяной лед намного моложе

Анализ ледяных запасов показал, что он депонировал не так давно. Если бы это были древние остатки, то он бы уже смешался с поверхностью реголита и разрушился. Пока нет точных данных о том, как вообще появился в кратерах.

  1. Атмосфера меняется с удаленностью от Солнца

Меркурий все же обладает тонкой экзосферой, в которой можно отыскать кальций, магний и натрий. Эти элементы способны меняться в зависимости от расстояния к Солнцу. Все перемены основываются на количестве поступающего солнечного света.

  1. Магнитное поле отличается на полюсах

Первая планета вырабатывает слабое магнитное поле (1% от земного). Но северный и южный полюса отличаются по показателям. На южном есть дыра, через которую солнечные лучи способны прорываться и ударять в поверхность.

  1. Магнитное поле напоминает земное

Магнитное поле Меркурия также отбивает заряженные частички и формирует аномалию горячего потока. При ударе с полем частички способны стать турбулентными. Тогда плазма оказывается в ловушке и раскаленный газ создает потоки.

  1. Орбита сыграла в пользу Эйнштейна

Меркурий способен похвастать не только приближенностью к единственной звезде Солнечной системы, но и самой эксцентрической орбитой. Все это говорит в пользу общей теории относительности. Это касалось момента перемены звездного света при вращении рядом планеты.

  1. Трудно отыскать, но о планете знают давно

Меркурий движется странно, поэтому за ним было сложно уследить. Из-за приближенности к звезде ученым приходиться справляться с сумерками. Но древним людям было проще отыскать планету, потому что небо не было загрязнено искусственным светом.

  1. Никаких спутников и колец

Чтобы разобраться в процессе создания Солнечной системы, необходимо детально изучить все планеты по порядку

Важно заметить, что Меркурий лишен системы колец и спутников. В этом одиночестве ему компанию составляет только Венера

Полезные статьи:

  • Интересные факты о Меркурии;
  • Ближайшая к Солнцу планета;
  • К какому типу планет принадлежит Меркурий?
  • Ближайшая планета к Меркурию
  • Возраст Меркурия
  • Жизнь на Меркурии
  • Обнаружение планеты Меркурий
  • Кто открыл Меркурий?
  • Посещали ли люди Меркурий?
  • Как Меркурий получил свое имя?
  • Терраформирование Меркурия

Положение и движение Меркурия

  • Как далеко Меркурий от Солнца?
  • Орбита Меркурия;
  • Сколько лететь до Меркурия;
  • Вращение Меркурия;
  • Ретроградный Меркурий;
  • Как долго длится день на Меркурии?;
  • Год на Меркурии;

Строение Меркурия

  • Из чего сделан Меркурий
  • Структура Меркурия
  • Строение Меркурия;
  • Поверхность Меркурия
  • Состав Меркурия;
  • Вода на Меркурии
  • Есть ли у Меркурия Кольца?;
  • Есть ли у Меркурия спутники?;
  • Сравнение Меркурия и Земли

Поверхность Меркурия

  • Температура на Меркурии;
  • Атмосфера Меркурия;
  • Погода на Меркурии;
  • Цвет Меркурия;
  • Геология Меркурия
  • Лед на Меркурии

Интерес ученых

История изучения близкого к Солнцу небесного объекта началась давно. Еще древние астрономы наблюдали за небесным телом, выявляя множество интересных фактов про планету Меркурий. Не все из них подтвердились позже.

Изучением небесного объекта занимался и Николай Коперник. Однако из-за сложности наблюдения за этим небесным телом, он не смог провести крупное исследование и собрать точные сведения.

Николай Коперник (19.02.1473 — 24.05.1543) — польский астроном, математик, механик, экономист, каноник эпохи Возрождения (иллюстрация из открытых источников)

Полеты на планету

Интересные факты о Меркурии — заслуга ученых, занимающихся исследованием космического пространства.

Направить туда космический корабль пока проблематично. Но на маленькую планету уже было направлено несколько космических аппаратов:

«Маринер-10″;»Мессенджер»;»Mercury Planetary Orbiter» и «Mercury Magnetospheric Orbiter» в составе одной миссии.

В 70-х гг. был запущен «Маринер-10», который пролетел по касательной на расстоянии более 300 км от исследуемого объекта. Аппарат сделал фотографии только половины поверхности.

После этого радиолокационные наблюдения, проведенные антенной Голдстоуна в Калифорнии в начале 90-х гг., показали, что на дне глубоких кратеров на полюсах есть замерзшая вода.

Космический аппарат «Маринер-10» (иллюстрация из открытых источников)

В 2004 г. был запущен второй аппарат «Мессенджер». Он вышел на орбиту. В течение орбитального пути «Мессенджер» подробно исследовал поверхность объекта.

Он отобразил всю поверхность и нашел дополнительные данные о замороженной воде.

Космический аппарат «Мессенджер» (иллюстрация из открытых источников)

Следующим «путешествием» на Меркурий является совместная миссия Европейского космического агентства (ЕКА) и Японского агентства аэрокосмических исследований (JAXA).

Она стартовала в 2018 г. и закончится в 2025 г. Эта миссия направлена на более подробное изучение планеты Меркурий, интересные факты будут открыты еще.

JAXA (иллюстрация из открытых источников)

Оригинал статьии многие другие материалы, вы можете найти на нашемсайте.

Ставьте, пожалуйста, лайки и подписывайтесь на канал. Это позволит нам публиковать больше интересных статей.

Читать еще:

Что говорит о феномене ретроградного Меркурия астрология

У астрономии и астрологии общая история — наши предки уделяли равное внимание обеим сферам. И все же сегодня они находятся по разные стороны баррикад: астрономия занимается изучением Вселенной за пределами нашей планеты, в то время как астрология пытается разобраться, каким образом все происходящее вне Земли сказывается на нас

«В древности представители самых разных цивилизаций наблюдали за движением небесных тел по небосводу. Из-за вращения Земли им казалось, что эти объекты двигаются с запада на восток, но иногда некоторые из них внезапно меняли направление на прямо противоположное, — объясняет Мэгги Адерин-Покок. — Раньше такие объекты называли «блуждающими звездами» из-за их переменчивого поведения, но со временем выяснилось, что это планеты Солнечной системы, которые вращаются по орбите».

View on Instagram

По мнению астрологов вроде Сьюзан Миллер, смена курса Меркурия может напрямую сказываться на земных делах, причем не лучшим образом. «Меркурий управляет всем, что связано с движением, — поясняет она. — В период ретрограда не стоит покупать компьютер, машину или телефон, так как потом с ними наверняка возникнут проблемы

Также я не рекомендую подписывать какие-либо контракты — впоследствии вы можете обнаружить, что упустили что-то важное. И еще я не советую ходить на свидания в это время: ретроградный Меркурий негативно сказывается на коммуникации, так что вероятность нарваться на неподходящего вам человека крайне велика»

Впрочем, наука подобные суеверия не разделяет. «Было множество теорий, пытающихся объяснить, почему обратное движение Меркурия так влияет на обитателей Земли. Некоторые считают, что все дело в гравитационных силах планеты и их взаимодействии с водой в наших телах, — говорит Адерин-Покок. — Но научные подсчеты доказывают, что, если вы пройдете в нескольких метрах от движущейся машины, это окажет больший гравитационный эффект, нежели Меркурий, удаленность которого от Земли составляет от 82 до 217 миллионов километров в зависимости от положения обеих планет».

Британская актриса Саманта Эггар на фоне изображений знаков зодиака, 1965

Решение в рамках общей теории относительности


Альберт Эйнштейн, 1921

Основная статья: Задача Кеплера в общей теории относительности

После создания в 1905 году специальной теории относительности (СТО) А. Эйнштейн осознал необходимость разработки релятивистского варианта теории тяготения, поскольку уравнения Ньютона были несовместимы с преобразованиями Лоренца, а скорость распространения ньютоновской гравитации была бесконечна. В одном из писем 1907 года Эйнштейн сообщал:

Первые наброски релятивистской теории тяготения опубликовали в начале 1910-х годов Макс Абрахам, Гуннар Нордстрём и сам Эйнштейн. У Абрахама смещение перигелия Меркурия было втрое меньше реального, в теории Нордстрёма ошибочным было даже направление смещения, версия Эйнштейна 1912 года давала значение на треть меньше наблюдаемого.

В 1913 году Эйнштейн сделал решающий шаг — перешёл от скалярного гравитационного потенциала к тензорному представлению, этот аппарат позволил адекватно описать неевклидову метрику пространства-времени. В 1915 году Эйнштейн опубликовал окончательный вариант своей новой теории тяготения, получившей название «общая теория относительности» (ОТО). В ней, в отличие от ньютоновской модели, вблизи массивных тел геометрия пространства-времени заметно отличается от евклидовой, что приводит к отклонениям от классической траектории движения планет.

18 ноября 1915 года Эйнштейн рассчитал (приближённо) это отклонение и получил практически точное совпадение с наблюдаемыми 43″ в столетие. При этом не понадобилось никакой подгонки констант и не делалось никаких произвольных допущений. Если обозначить:

  • M{\displaystyle M} — масса Солнца;
  • c{\displaystyle c} — скорость света;
  • A{\displaystyle A} — величина большой полуоси орбиты планеты;
  • e{\displaystyle e} — эксцентриситет орбиты;
  • T{\displaystyle T} — период обращения,

то дополнительное смещение перигелия планеты (в радианах за оборот) в ОТО даётся формулой:

δφ ≈ 6πGMc2A(1−e2) = 24π3A2T2c2(1−e2){\displaystyle \delta \varphi \ \approx \ {\frac {6\,\pi \,G\,M}{c^{2}\,A\,\left(1-e^{2}\right)}}\ =\ {\frac {24\,\pi ^{3}\,A^{2}}{T^{2}\,c^{2}\,\left(1-e^{2}\right)}}}

Для Меркурия эта формула даёт 42,98″ за столетие в отличном соответствии с наблюдениями. Точное решение уравнений Эйнштейна, полученное Карлом Шварцшильдом два месяца спустя (январь 1916, уже после открытия окончательной версии уравнений поля), подтвердило приведённую формулу.

До 1919 года, когда Артур Эддингтон обнаружил гравитационное отклонение света, объяснение смещения перигелия Меркурия было единственным экспериментальным подтверждением теории Эйнштейна. В 1916 году Гарольд Джеффрис выразил сомнение в адекватности ОТО, поскольку она не объясняла смещение узлов орбиты Венеры, ранее указанное Ньюкомом. В 1919 году Джеффрис снял свои возражения, поскольку, по новым данным, никаких аномалий в движении Венеры, которые не укладывались бы в теорию Эйнштейна, обнаружено не было.

Тем не менее критика ОТО продолжалась некоторое время и после 1919 года. Некоторые астрономы высказывали мнение, что совпадение теоретического и наблюдаемого смещения перигелия Меркурия может быть случайным, или оспаривали достоверность наблюдаемого значения 43″. Современные точные измерения подтвердили оценки смещения перигелия планет и астероидов, предложенные ОТО.

Аномальная часть смещения перигелия,угловых секунд за столетие
Небесное тело Теоретическоезначение Наблюдаемоезначение
Меркурий 00043,0 0043,1 ± 0,5
Венера 00008,6 0008,4 ± 4,8
Земля 00003,8 0005,0 ± 1,2
Марс 00001,35 0001,1 ± 0,3
Икар (астероид) 00010,1 0009,8 ± 0,8

Большая погрешность данных для Венеры и Земли вызвана тем, что их орбиты почти круговые.

Формула ОТО была проверена также для двойной звезды-пульсара PSR B1913+16, в которой две звезды, по массе сравнимые с Солнцем, вращаются на близком расстоянии, и поэтому релятивистское смещение периастра каждой (аналога перигелия) очень велико. Наблюдения показали смещение на 4,2 градуса в год, в полном согласии с ОТО. Самое большое смещение периастра обнаружено у открытого в 2003 году двойного пульсара PSR J0737−3039 — на 17 градусов в год; измерения 2005 года показали соответствие динамики системы предсказаниям ОТО с точностью 0,05 % в доверительном интервале 3σ{\displaystyle 3\sigma }.

В 2020 году завершились более чем 30-летние измерения релятивистского смещения периастра для движения звезды вокруг компактного радиоисточника Стрелец A* (предположительно чёрной дыры) в центре нашей Галактики. Измерения проводил немецкий Институт внеземной физики Макса Планка. Результаты полностью соответствовали предсказаниям ОТО.

Атмосфера Меркурия

Выше мы писали, что атмосфера на Меркурии отсутствует, хотя с этим утверждением можно и поспорить, атмосфера планеты Меркурий не чтобы отсутствует, она просто другая и отличается от того, что мы понимаем собственно под атмосферой.

Оригинальная атмосфера этой планеты была рассеяна 4,6 миллиарда лет назад по причине очень слабой гравитации Меркурия, которая попросту не могла удержать ее. Вдобавок близость к Солнцу и постоянные солнечные ветры также не способствовали сохранению атмосферы в классическом понимании этого термина. Тем не менее, слабая атмосфера на Меркурии таки сохранилась, причем это самая из непостоянных и незначительных атмосфер в солнечной системе.

Состав атмосферы Меркурия включает в себя гелий, кислород, калий, натрий, также пары воды. К тому же нынешняя атмосфера планеты периодически пополняется из различных разнообразных источников, таких как, частицы солнечного ветра, вулканическая дегазация, радиоактивный распад элементов.

Также, несмотря на маленький размер и мизерную плотность атмосферу Меркурия можно разделить на целых четыре секции: нижний, средний и верхний слои, а также экзосфера. Нижняя атмосфера – имеет в себе много пыли, которая предает Меркурию своеобразный красно-коричневый вид, она прогревается до высоких температур, благодаря теплу, которое отражается от поверхности. Средняя атмосфера имеет реактивную струю, подобную земной. Верхняя атмосфера Меркурия активно взаимодействует с солнечными ветрами, которые также нагревают ее до высоких температур.

История открытия планеты Меркурий

История Меркурия и наших знаний об этой планете уходит корнями в глубокую древность, по сути это одна из первых планет, известных человечеству. Так Меркурий наблюдали еще в древнем Шумере, одной из первых развитых цивилизаций на Земле. У шумерцев Меркурий ассоциировался с тамошним богом письменности Набу. Знали об этой планете также вавилонские и древнеегипетские жрецы, по совместительству прекрасные астрономы древнего мира.

Что же касается происхождения названия планеты «Меркурий», то оно идет уже от римлян, которые назвали эту планету в честь античного бога Меркурия (в греческом варианте Гермеса), покровителя торговли, ремесел и посланца других олимпийских богов. Также астрономы прошлого Меркурий порой поэтически называли утренней или вечерней зорей, по времени его появления на звездном небосводе.

Бог Меркурий, в честь которого назвали планету.

Также античные астрономы полагали, что Меркурий и его ближайшая соседка планета Венера вращаются таки вокруг Солнца, а не вокруг Земли. А вот Солнце уже в свою очередь вращается вокруг Земли.

Состав и поверхность планеты Меркурий

Состав Меркурия на 70% представлен металлическим и на 30% силикатным материалам. Считают, что его ядро охватывает примерно 42% всего объема планеты (у Земли – 17%). Внутри располагается ядро из расплавленного железа, вокруг которого сосредоточен силикатный слой (500-700 км). Поверхностный слой – кора с толщиной в 100-300 км. На поверхности можно заметить огромное количество хребтов, которые тянутся на километры.

По сравнению с другими планетами Солнечной системы, ядро Меркурия обладает наибольшим количеством железа. Полагают, что раньше Меркурий был намного больше. Но из-за удара с крупным объектом внешние слои разрушились, оставив главное тело.

Некоторые считают, что планета могла появиться в протопланетном диске до того, как солнечная энергия стала стабильной. Тогда он должен быть вдвое массивнее современного состояния. При нагреве в 25000-35000 К большая часть породы могла просто испариться. Изучите строение Меркурия на фото.

Внутренняя структура Меркурия представлена корой, мантией и ядром

Есть и еще одно предположение. Солнечная туманность могла привести к увеличению частичек, которые набросились на планету. Тогда более легкие отошли и не использовались при создании Меркурия.

Если смотреть издалека, то планета напоминает земной спутник. Такой же кратерный ландшафт с равнинами и следами лавовых потоков. Но здесь отмечено большее разнообразие элементов.

Меркурий сформировался 4.6 миллиардов лет назад и попал под обстрел целой армии астероидов и мусорных осколков. Атмосферы не было, поэтому удары оставили заметные следы. Но планета оставалась активной, так что лавовые потоки создали равнины.

Улучшенные изображения кратеров Манч, Сандер и По среди вулканических равнин (оранжевые), недалеко от бассейна Калори

Размеры кратеров варьируются от небольших ям до бассейнов с шириною в сотни километров. Самый крупный – Калорис (равнина Жары) с диаметром в 1550 км. Удар был настолько сильным, что привел к лавовому извержению на противоположной планетарной стороне. А сам кратер окружен концентрическим кольцом высотой в 2 км. На поверхности можно отыскать примерно 15 крупных кратерных образований. Внимательно рассмотрите схему магнитного поля Меркурия.

Магнитное поле Меркурия

Планета обладает глобальным магнитным полем, достигающем 1.1% земной силы. Возможно, что источником служит динамо, напоминая нашу Землю. Оно образуется благодаря вращению жидкого ядра, наполненного железом.

Этого поля хватает, чтобы противостоять звездные ветра и формировать магнитосферный слой. Его силы достаточно, чтобы удерживать плазму из ветра, из-за чего происходит поверхностное выветривание.

Астрономические характеристики Меркурия:


Расстояние от Меркурия до Земли меняется от 82 до 217 млн км. Поэтому при наблюдении с Земли Меркурий за несколько дней изменяет своё положение относительно Солнца от запада (утренняя видимость) к востоку (вечерняя видимость).

Видимая звёздная величина Меркурия колеблется от −1,9 до 5,5. Наиболее благоприятные условия для наблюдения Меркурия – в низких широтах и вблизи экватора: это объясняется с тем, что продолжительность сумерек там наименьшая. В средних широтах обоих полушарий найти Меркурий возможно только в дни равноденствий (продолжительность сумерек при этом минимальная). Оптимальным временем для наблюдений планеты являются утренние или вечерние сумерки в периоды его элонгаций (периодов максимального удаления Меркурия от Солнца на небе, наступающих несколько раз в год). В высоких широтах планету практически никогда (за исключением затмений) нельзя увидеть на тёмном ночном небе: Меркурий виден в течение очень небольшого промежутка времени после наступления сумерек.

Меркурий движется вокруг Солнца по довольно сильно вытянутой эллиптической орбите (эксцентриситет 0,205) на среднем расстоянии 57,91 млн км (0,387 а.е.). В перигелии Меркурий находится в 46,0 млн км от Солнца (0,3 а.е.), в афелии – в 69,7 млн км (0,46 а.е.), таким образом, в перигелии Меркурий более чем в полтора раза ближе к Солнцу, чем в афелии. Наклон орбиты к плоскости эклиптики равен 7°. Средняя скорость движения планеты по орбите – 48 км/с (в афелии – 38,7 км/с, а в перигелии – 56,6 км/с).

Меркурий обращается по своей орбите вокруг Солнца с периодом около 87,97 земных суток. Продолжительность одних звёздных суток на Меркурии составляет 58,65 земных, а солнечных — 176 земных. Продолжительность меркурианского дня (и соответственно ночи) на 33,3 % меньше продолжительности меркурианского года.

Такое соотношение периодов вращения вокруг оси и обращения Меркурия вокруг Солнца является уникальным для Солнечной системы явлением. Предположительно оно объясняется тем, что приливное воздействие Солнца отбирало момент количества движения и тормозило вращение, которое было первоначально более быстрым, до тех пор, пока оба периода не оказались связаны целочисленным отношением. В результате за один меркурианский год Меркурий успевает повернуться вокруг своей оси на полтора оборота. В результате такого движения планеты на ней можно выделить «горячие долготы» — два противоположных меридиана, которые попеременно обращены к Солнцу во время прохождения Меркурием перигелия, и на которых из-за этого бывает особенно горячо даже по меркурианским меркам.

Благодаря вытянутой орбите, комбинация осевого и орбитального движения Меркурия порождает ещё одно интересное явление. Скорость вращения планеты вокруг оси — величина практически постоянная, в то время как скорость орбитального движения постоянно изменяется. На участке орбиты вблизи перигелия в течение около восьми суток угловая скорость орбитального движения превышает угловую скорость вращательного движения. В результате Солнце на небе Меркурия описывает петлю, как сам Меркурий на небе Земли. На долготах, близких к 90 и 270 градусов, Солнце после восхода останавливается, поворачивает обратно и заходит почти в той же точке, где взошло. Но спустя несколько земных суток Солнце восходит снова в той же точке и уже надолго. Данный эффект иногда называют эффектом Иисуса Навина. Его имя встречается в Библии – однажды он остановил движение Солнца (Нав. 10:12-13). Около захода картина повторяется в обратном порядке.

Интересно также, что Меркурий в среднем чаще других является ближайшей к Земле планетой, однако ближайшие по расположению орбит к Земле планеты – это Марс и Венера, Меркурий. Объяснить явление можно тем, что другие планеты больше отдаляются не будучи столь «привязанными» к Солнцу.

Температура на поверхности Меркурии

На Меркурии наблюдается интересная ситуация, потому что температура колеблется между адом и льдом. Дело в том, что тонкий атмосферный слой не способен удерживать постоянный показатель. Да и особенности орбиты вокруг Солнца приводят к тому, что на осветленной стороне способен расплавиться свинец, а не холодной все замерзает.

Орбитальные характеристики

Самая маленькая планета отличается наиболее эксцентричным орбитальным путем в нашей системе. Из-за этого расстояние от Солнца к Меркурию способно расходиться между 46 миллионов км (перигелий) и 70 миллионов км (афелий). Из-за средней орбитальной скорости в 47.322 км/с у планеты уходит 87.969 дней на одно орбитальное путешествие.

Распределение температуры на поверхности Меркурия

Средняя скорость вращения – 10.892 км/ч, поэтому на один осевой оборот тратит 58.646 дней. Получается, что мы сталкиваемся с резонансом в 3:2, где на три осевых оборота уходит 2 орбитальных.

Фактически получается, что из-за замедленного вращения и эксцентричности Солнце тратит 176 дней, чтобы выполнить один небесный проход. Да, один день длится дольше года. Также Меркурий характеризуется наиболее низким показателем осевого наклона – 0.027° и не обладает сезонными температурными колебаниями.

Экзосфера

Меркурий располагает тонким атмосферным слоем. Но объект чересчур маленький и жаркий, поэтому присутствует только переменная экзосфера, химический состав которой представлен водородом, натрием, кислородом, кальцием, гелием, калием и водяным паром.

Газы создают общее давление в 10-14 бар. Полагают, что экзосфера создалась из захваченных Солнцем частичек, появившихся из вулканов, и осколков от метеоритных ударов.

Поверхностная температура

Без нормальной атмосферы планета не способна накапливать тепло. Высокий показатель эксцентриситета приводит к серьезному температурному колебанию между освещенной и затененной сторонами. В итоге, температура на Меркурии доходит до 427°C и остывает до -173°C.

Северная область Меркурия

Однако на поверхности нашли органические молекулы и ледяные запасы, спрятанные в кратерах на северных полярных участках. Дело в том, что они скрываются в тени и никогда не освещаются прямыми солнечными лучами.

Полагают, что в кратерах могло сохраниться примерно 1014-1015 кг замороженной воды, покрытой слоем реголита. Пока никто не может точно сказать, откуда взялся лед. Но среди вариантов: падение кометы или же дегазация воды от внутренней планетарной части.

Мы видим, что Меркурий представляет собою одно сплошное противоречие. Этот мир способен раскаляться и замерзать, а также пляшет по странному орбитальному пути. Поэтому на планете нет жизни. Но, возможно, нам удастся колонизировать кратерные участки и использовать водные залежи для формирования благоприятной среды. Теперь вы знаете, какая температура на Меркурии днем и ночью.

Полезные статьи:

  • Интересные факты о Меркурии;
  • Ближайшая к Солнцу планета;
  • К какому типу планет принадлежит Меркурий?
  • Ближайшая планета к Меркурию
  • Возраст Меркурия
  • Жизнь на Меркурии
  • Обнаружение планеты Меркурий
  • Кто открыл Меркурий?
  • Посещали ли люди Меркурий?
  • Как Меркурий получил свое имя?
  • Терраформирование Меркурия

Положение и движение Меркурия

  • Как далеко Меркурий от Солнца?
  • Орбита Меркурия;
  • Сколько лететь до Меркурия;
  • Вращение Меркурия;
  • Ретроградный Меркурий;
  • Как долго длится день на Меркурии?;
  • Год на Меркурии;

Строение Меркурия

  • Из чего сделан Меркурий
  • Структура Меркурия
  • Строение Меркурия;
  • Поверхность Меркурия
  • Состав Меркурия;
  • Вода на Меркурии
  • Есть ли у Меркурия Кольца?;
  • Есть ли у Меркурия спутники?;
  • Сравнение Меркурия и Земли

Поверхность Меркурия

  • Температура на Меркурии;
  • Атмосфера Меркурия;
  • Погода на Меркурии;
  • Цвет Меркурия;
  • Геология Меркурия
  • Лед на Меркурии

С этим читают