22 самых интересных экзопланеты с захватывающими деталями

Железная планета

Существуют и такие планеты, которые обеднены лёгкими элементами в следствие выветривания их солнечным ветром. Обычно такие планеты находятся во внутренних частях планетарных систем. И Солнечная система тому не исключение. Недаром, самая близкая к Солнцу планета Меркурий на 3/4 состоит из железа.


Но железные планеты могут зародиться только у звезд, содержащих в составе своего протопланетного материала немалое количество железа.

Отличает такие объекты одно — высокая платность материи. У них может не наблюдаться тектонической активности и даже не быть магнитного поля (в случаях застывания металлического ядра).

CoRoT-7 b

CoRoT-7 b становится рекордсменом нашей статьи, потому как его можно отнести к четырем видам планет в нашей классификации. Он является суперземлей, хтонической, лавовой (об этом ниже) и железной планетой одновременно. Выше мы описывали эту удивительную экзопланету, поэтому идём дальше.

Kepler-10 b

Эта железная экзопланета вращается вокруг своей звезды, очень похожей на наше Солнце, на расстоянии в 20 раз меньшем, чем радиус орбиты Меркурия, поэтому её поверхность разогрета до очень высоких температур (вероятно около 1550°С). В таких условиях железо находится в жидкой форме, образуя огромный лавовый океан на поверхности, что относит экзопланету также в разряд лавовых, о которых мы расскажем ниже.

Размерами Kepler-10 b в 1,4 раза превосходит Землю, а массой в 4,5 раза.

7

Солнце

5 млрд. лет назад после гибели гигантской звезды произошёл взрыв сверхновой. Взрывная волна прошла к водородному облаку. Облако распалось, образуя кольца газа и пыли. В его центре зажглось ядерное пламя – новая  звезда – Солнце. А из частиц газа и пыли сформировались 9 планет.

Солнечное пространство – Гелиосфера – по форме похожа на пузырь, за пределами которого – межзвёздное пространство. Это пространство, в котором плазма солнечного ветра движется со сверхзвуковой скоростью относительно Солнца. Первые 10 млрд км это скорость примерно миллион км/час. Далее, сталкиваясь с межзвёздной средой, скорость плазмы уменьшается. Это происходит за Границей ударной волны. Граница за которой уравновешивается давление солнечного ветра и межзвёздной среды называется Гелиопаузой. За границей Головной ударной волны начинается межзвёздное пространство.

Вся энергия, получаемая на земле – это энергия Солнца.

Внутри Солнца при температуре 15 млн. градусов протекает термоядерная реакция превращения водорода в гелий. Каждую секунду Солнце теряет 4 млн. тонн своей массы, которая высвобождается в виде энергии. Носитель этой энергии – фотон. Это безмассовая элементарная частица – квант электромагнитного излучения. В вакууме его скорость равна скорости света. Из-за высокой плотности и активности солнечного вещества фотон от ядра к поверхности Солнца прорывается несколько тысяч лет, а с поверхности до Земли долетает за 8 минут.

Состав Солнца учёные узнали по анализу спектра солнечного света. Оно содержит 73% водорода, 24% гелия, остальное частицы других элементов.

Фотосфера – поверхность Солнца её температура 6 тыс. градусов. Она покрыта пузырями нагретого газа. Каждый пузырь размером с Техас. Так называемые пятна на солнце это участки с более низкой температурой. Размеры пятен больше размера Земли. Образуются пятна за 10 дней и исчезают за 2 недели. Чем больше магнитная активность Солнца, тем больше на нём пятен, так как в этих местах проходят силовые линии, которые создаются газами и находятся под поверхностью. Поверхность вращается с различной скоростью. На экваторе один оборот происходит за 26 дней, а на полюсах за 37. Это искажает магнитное поле и генерирует энергию. Солнечные вспышки высвобождают энергию 10 млн. водородных бомб.

Как поверхность, так и внутреннее вещество Солнца постоянно перемещаются, вызывая при этом «солнечные ветры» – вспышки электро-магнитых излучений.

Каждые 11 лет магнитные полюса меняются. В середине этих циклов энергия Солнца максимальна.

Над  фотосферой – внутренняя атмосфера Солнца – хромосфера, которую образуют вспышки – газовые дуги вокруг магнитных силовых линий. Высота дуг – 50 тыс. км. Разрываясь, дуги образуют струи высотой 100 тыс. км (для сравнения средний диаметр Земли менее 13 тыс. км).

Внешняя атмосфера Солнца – корона – видна во время полного солнечного затмения. Когда Луна заслоняет Солнце. Температура короны достигает 2 млн. градусов. Корона отражает колебания на поверхности Солнца – вспышки короны – следствие выбросов изнутри. Осколки сильных выбросов – наэлектризованные частицы Солнца – отлетают в космическое пространство на миллионы километров. Их скорость 400 – 800 кмсек в зависимости от активности Солнца. Землю они достигают за 4 дня. Потоки таких частиц называют – солнечный ветер. Реакция их с внешней атмосферой Солнца видна на Земле как полярное сияние. Через атмосферу они не проходят, благодаря магнитному полю Земли – оно их отталкивает. И только на полюсах силовые линии проводят их к планете – загораются огни полярных сияний.

Солнце пульсирует и меняет форму.

У полюсов возникают торнадо величиной с Землю. Скорость их вращения 500 тыс. кмчас.

Через 5 млрд. лет Солнцу будет не хватать водорода. Оно начнёт расширяться. Увеличившись в 200 раз, станет красным гигантом. Ближайшие планеты – Меркурий, Венера и Земля – погибнут. Затем, выдыхая из себя дым, Солнце будет колебаться. Останется только раскалённое ядро, которое сократится до размера Земли – Солнце превратится в белый карлик. Когда угаснет и ядро, Солнце станет чёрным карликом. Из планет Солнечной системы уцелеет только Марс.

Изображение с сайта 

Дамоклоиды

Основная статья: Дамоклоиды

Дамоклоиды — немногочисленная группа астероидов, движущихся по кометообразным траекториям. Эти тела характеризуются высокоэксцентричными (e>,75{\displaystyle e>0{,}75}) сильно наклонёнными орбитами, схожими с орбитами комет, но не проявляющих кометной активности. Дамоклоиды обладают широким разбросом значений больших полуосей и могут двигаться как вблизи Солнца (2009 РС82 a=2,528 a. e.), так и удаляться от него на огромные расстояния (2005 VX3 a=837,3 a. e.). Считается, что дамоклоидом является любой объект с критерием Тиссерана Ti<2{\displaystyle {T_{i}}<2}. Согласно предположениям некоторых астрономов дамоклоиды могут являться ничем иным как неактивными ядрами кометы Галлея или схожих с ней комет. Однако, единства относительно природы происхождения данных тел, а также точных границ их распространения среди астрономов пока нету. По этой причине дамоклоиды на данный момент не выделяют как часть официальной классификации малых планет. По состоянию на февраль 2011 года насчитывалось 41 представителя данной группы. Наиболее известным представителем данного класса является астероид (5335) Дамокл.

Секты планет

Слово «секта» произошло от латинского seco, что означает «отрезать» или «разделять». В астрологии сектой называется разделение на дневные и ночные планеты. Каждая из семи видимых планет относится к дневным или ночным согласно своей природе. Далее ее положение в гороскопе оценивается в зависимости от положения одной из сект карты. Несмотря на то, что положение в секте не является каким-то особенно значительным моментом, когда дело доходит до толкования карты, оно становится очень ценным инструментом для понимания основной природы планет.

Наиболее важный принцип для понимания сект – равновесие между «демонстрацией силы» и «внешней видимостью». «Демонстрация силы» означает выражение подлинной природы вещей без обмана и вероломства. Это то, о чем можно сказать: «как ты видишь, так оно и есть». «Внешняя видимость» – это в точности обратное, или «внешность обманчива». Чем более дневной является планета, тем больше она «демонстрирует силу», а чем более ночной она является, тем больше в ней «внешней видимости».

Очевидно, что две крайности образуют правители двух сект: Солнце – дневных, Луна – ночных. Наиболее дневная планета – Солнце – исключительно «демонстрирует силу». Солнце никогда не может быть ничем иным, кроме того, что оно есть на самом деле. И оно проявляет свою истинную природу с откровенной, ослепительной силой.

Луна же, напротив, вся есть внешнее: у нее нет собственного света, она лишь отражает солнечный. Если Солнце всегда одинаково и не меняется изо дня в день, то Луна меняет свою внешность каждую ночь.

Разделение планет на секты

Дневные: Солнце Юпитер Сатурн

Нейтральные: Меркурий Венера Марс

Ночные: Луна


Меркурий – хозяин двойственности – считается полностью нейтральным, в равной мере демонстрирующим свою силу и создающим внешние эффекты.

Будьте внимательны и не путайте дневные и ночные планеты с иными принципами разделения, например, на «мужские» и «женские» или на «деятельные» и «чувственные».

Разделение на дневные и ночные, конечно, имеет с ними много общего, но это не одно и то же. Ночные планеты ни в коем случае не пассивны или чувственны (вспомните, Марс – самая активная и агрессивная из всех планет – является ночной, а он со всей очевидностью представляет мужскую энергию).

Обращаясь к какой-либо из планет, мы, прежде всего, изучаем, какую секту она представляет, чтобы понять ее основной характер.

Редактор Astromeridian.ru

Главный пояс астероидов

Основная статья: Пояс астероидов

Пояс астероидов — это область пространства Солнечной системы, располагающаяся между орбитами Марса и Юпитера и являющаяся местом скопления большей части известных на данный момент астероидов.

  • Щели Кирквуда — это области в поясе астероидов, в которых практически отсутствуют астероиды из-за резонансного действия Юпитера. Дело в том, что во время каждого сближения астероида с Юпитером, астероид испытывает определённое гравитационное воздействие со стороны планеты-гиганта. А если речь идёт об орбитальном резонансе, то такие сближения происходят регулярно. В результате, гравитационные воздействия происходят со строгой периодичностью и с каждым разом усиливают друг друга, как бы раскачивая астероид на его орбите, что в конце концов приводит к переходу астероида на новую, зачастую сильно вытянутую, орбиту. Причём, тут следует отметить, что речь идёт не о существовании каких-то пустых областей в главном поясе, в которых отсутствуют астероиды, а лишь о некоторых значениях больших полуосей (средних расстояний астероидов от Солнца), которые почти не встречаются среди астероидов. Такие области обозначаются соотношением периодов обращения астероида и Юпитера, и называются щелями Кирквуда. Таких щелей, то есть — резонансов, существует достаточно много, но наиболее крупными являются резонансы 3:1 и 5:2, именно они и являются условными границами, разделяющими пояс астероидов на три части, которые несколько различаются между собой по составу и структуре:
    • Внутренний — между резонансами 4:1 и 3:1 (между 2,06 и 2,5 а. е.), наклон не более 18°. Крупнейший представитель — астероид (4) Веста. Внутреннюю часть главного пояса, в свою очередь, можно разделить ещё на две зоны:
      • Ia — между резонансами 4:1 и 10:3 (между 2,06 и 2,33 а. е.)
      • Ib — между резонансами 10:3 и 3:1 (между 2,33 и 2,5 а. е.)
    • Средний — между резонансами 3:1 и 5:2 (между 2,5 и 2,82 а. е.), наклон не более 33°. Крупнейший представитель — карликовая планета Церера. Среднюю часть главного пояса, в свою очередь, можно разделить ещё на две зоны:
      • IIa — между резонансами 3:1 и 8:3 (между 2,5 и 2,706 а. е.)
      • IIb — между резонансами 8:3 и 5:2 (между 2,706 и 2,82 а. е.)
    • Внешний — между резонансами 5:2 и 2:1 (между 2,82 и 3,27 а. е.), наклон не более 30°, эксцентриситет не более 0,35. Крупнейший представитель — астероид (10) Гигея. Внешнюю часть главного пояса, в свою очередь, можно разделить ещё на две зоны:
      • IIIa — между резонансами 5:2 и 9:4 (между 2,82 и 3,03 а. е.)
      • IIIb — между резонансами 9:4 и 2:1 (между 3,03 и 3,27 а. е.)
  • Семейства астероидов — это группы астероидов, имеющих примерно схожие элементы орбит, такие как большая полуось, наклон орбиты и эксцентриситет. При этом, некоторые из них, чьи собственные элементы орбит являются одинаковыми, скорее всего являются фрагментами разрушившихся в прошлом в результате столкновений более крупных астероидов. Астероиды семейств не группируются в какой-то определённой точке, а распределены по всему объёму главного пояса и определяются орбитальными параметрами своих представителей. Причём некоторые даже очень крупные семейства встречаются не только внутри главного пояса, но и на его границах (семейство Венгрии, семейство Хильды).
  • Спектральные классы астероидов — это совокупность групп астероидов, каждая из которых характеризуется особыми параметрами спектра, цвета и альбедо, а следовательно — и химического состава поверхности. Наиболее широкое распространение получили два варианта этой классификации: Толена и SMASS. Классификация составленная в рамках проекта SMASS по сути является уточнённой и расширенной классификацией американского астронома Дэвида Толена и основные спектральные классы в них совпадают.
  • Кометы главного пояса — это особый класс объектов, входящих в состав главного пояса астероидов наравне с другими астероидами и двигающихся по почти круговым орбитам. Но в отличие от астероидов, на определённых участках орбит (наиболее близких к Солнцу), они способны проявлять кометную активность за счёт льда и замёрзших газов, сохранившихся неглубоко под поверхностью этих тел. Не исключено, что многие астероиды ранее тоже относились к этому классу, но исчерпав все запасы летучих веществ стали выродившимися кометами ((14827) Гипнос).

Самый большой астероид в Солнечной системе

Такой астероид может натворить много дел.

Ранее самым большим астероидом Солнечной системы являлась Церера. Диаметр объекта составляет около 950 километров. Вторым по размеру считалась Паллада с диаметром 512 километров. А Веста занимала третью строчку самых больших из известных астероидов Солнечной системы, уступая по размерам Палладе, но обгоняя ее по массе.

После того, как ученые перевели Цереру в разряд карликовых планет, Паллада стала занимать верхнюю строчку самых больших (по размерам) астероидов в Солнечной системе. Однако астрономы уточнили размеры Весты и оказалось, что она больше Паллады. Диаметр Весты составляет 530 километров. Таким образом, Веста стала не только самым большим, но и самым массивным астероидом нашей Солнечной системы.

Двойник Земли

Экзопланеты такого типа должны удовлетворять следующим условиям: планета должна находиться в обитаемой зоне и соответствовать Земле по массе, размерам, составу и температурному режиму. Одним словом, она должна быть похожей на нашу Землю, а также её звезда должна соответствовать нашему Солнцу.

Такие планеты очень редки во Вселенной, а пригодных для жизни (в нашем понимании) среди них ещё меньше. Но одной из главных задач ученых-космологов является поиск двойников Земли.

Сегодня нам известно несколько планет-кандидатов в двойники Земли и они являются предметом исследования ученых. Но ежегодно находятся новые планеты, похожие на Землю.

Международная группа ученых разработала индекс «подобия Земле», который рассчитывается на основании множества данных: размера, массы, облучения, температуры и др. Чем больше характеристик экзопланеты совпадает с земными, тем выше индекс схожести она имеет.

Kepler-452 b

Kepler-452 b приблизительно на 60% больше нашей Земли, хотя точные её характеристики пока не известны. Она вращается вокруг звезды, очень похожей на Солнце, делая полный оборот вокруг неё за 385 суток. От нас планета удалена на 1480 св. лет.

Её орбита лежит в зоне обитаемости, а средняя температура поверхности предположительно -8°C (в том случае, если на планете нет парникового эффекта). С большой долей вероятности поверхность Kepler-452 b состоит из твердых пород, но её ядро вряд ли такое же массивное, как у Земли.

Kepler-186 f

Это одна из нескольких землеподобных планет, которые вращаются вокруг Красного карлика Kepler-186 на расстоянии 492 св.лет от нас.

Точные характеристики массы Kepler-186 f ещё не известны, но радиус планеты превышает земной на 13%, это одна из самых близких к Земле экзопланет по радиусу. Находится на расстоянии 0,393АЕ от родительской звезды, что соответствует расстоянию от Меркурия до Солнца. Но из-за того, что светимость звезды составляет 4% от солнечной, экзопланета получает свет, равный 32% от получаемого Землей. Такое положение Kepler-186 f в отношении освещенности примерно соответствует положению Марса в Солнечной системе.

Нахождение Kepler-186 f в зоне обитаемости и высокий индекс похожести на Землю не гарантирует, что планета способна иметь жизнь. Состав, а также атмосфера планеты могут играть большую роль в этом, но в настоящее время узнать эти характеристики не представляется возможным.

Kepler-438 b

Эта экзопланета находится на расстоянии 470 св.лет от нас в созвездии Лира. Её масса пока неизвестна, но размерами она всего на 12% превышает Землю. Её орбита находится во внутренней части зоны обитаемости. Родительская звезда — Красный карлик, который по размерам и массе примерно в 2 раза меньше Солнца. Kepler-438 b удалён от своей звезды на расстояние 0,16АЕ, что примерно в 2 раза меньше, чем расстояние между Меркурием и Солнцем. Из-за такой близости вероятно планета приливно-заблокирована, т.е. повернута к звезде всегда одной стороной.


Имея индекс подобия Земле равный 0,88, Kepler-438 b является на сегодня (2018 г.) самой первой в списке двойников Земли. И при этом ученые говорят, что жизнь на этой планете вряд ли может существовать. Родительская звезда с периодом в 100 дней излучает серьёзные вспышки, большие чем солнечные в несколько раз. А близость планеты к звезде делают вспышки крайне опасными для известных форм жизни. Ученые считают, поток космического излучения такой величины мог бы мгновенно уничтожить всё живое на Земле.

Спутники

Спутники Юпитера начал открывать ещё в 1610 году Галилео Галиллей. Сегодня спутники делятся на:

  • Галилеевские спутники.
  • Другие (внешние и внутренние, регулярные и нерегулярные).

Сколько же спутников у планеты — гиганта? Спутники Юпитера представляют собой 79 космических тел, которые и по сей день постоянно изучаются учеными.

Некоторые спутники Юпитера достигают размеров небольших планет, вроде Меркурия. На некоторых спутниках предположительно нашли воду. Названия самых крупных спутников Юпитера: Ио, Ганимед, Каллисто, Европу.

Спутники Галилео (иллюстрация из открытых источников)

Ио

Ио – крупный спутник Юпитера, которых проявляет вулканическую активность. Спутник относится к так называемым галилейским лунам, так как был открыт ещё в 1610 году Галилео Галилеем.

По своему строению Ио представляет собой железное ядро, окруженное толстой оболочкой из силикатных пород. В некоторых местах есть небольшие ледники. Горы довольно высокие, достигают около 18-19 км в высоту.

Спутник Ио (иллюстрация из открытых источников)

Если посмотреть на фотографии спутника, можно заметить белесоватые участки, их создает двуокись серы, которая постоянно присутствует  на поверхности. Атмосфера также состоит из монооксида серы, атомной серы и кислорода.

Поскольку спутник проявляет вулканическую активность, на поверхности Ио замечены лавовые потоки, насчитывается тысячи активных вулканов.

Европа

Европа – ледяной спутник Юпитера. Поверхность его представлена слоем льда  толщиной от 20 до 40 км, глубже расположен океан (около 30 км), затем слой горных пород и железное ядро. На спутнике имеется много силикатных пород, а плотность его похожа на плотность Луны.

Спутник Европа (иллюстрация из открытых источников)

Атмосфера чрезвычайно разреженная и состоит из молекулярного кислорода. На поверхности спутника можно увидеть признаки того, что Европа довольно молода: кратеров немного, а ледяная поверхность ровная и чистая. По подсчетам учёных Европе коло 30 — 190 млн лет.

Есть ли жизнь на Европе?

Возможно, в верхних слоях океана существует некое подобие микробной культуры. Для того, чтобы убедиться в этом окончательно необходимо измерить соленость океана и его температуру. Также возможно возникновение жизни на дне океана, так как там имеются гидротермальные источники.

Структура спутника Европа (иллюстрация из открытых источников)

Ганимед


Крупнейшим спутником Юпитера является Ганимед, который больше чем Меркурий и Плутон. Диаметр Ганимеда составляет 5268 км.  Луна Юпитера была открыта ещё в 1610 году, благодаря трудам Галилео Галилея.

Структура спутника Ганимед (иллюстрация из открытых источников)

Поверхность спутника представлена слоем льда толщиной в 100 км. В центре находится ядро, состоящее из железа, которое покрывает мантия. Рельеф представлен кратерами и сложными узорами. Предполагается, что под толстым слоем льда находится грязь и вода.

Каллисто

Спутник входит в группу Галилея, был открыт в 1610 году. Примерно на 50% Каллисто состоит изо льда, остальную площадь занимает каменная часть. Глубже расположена ледяная литосфера и океан. Ядро состоит из силикатов, вокруг него расположена каменно – ледяная смесь.

Спутник Каллисто (иллюстрация из открытых источников)

Поверхность Каллисто усеяна кратерами больше, чем все другие во всей Солнечной системе. Тектоническая и вулканическая активность отсутствует.

Атмосфера представлена слоем двуокиси углерода, который постоянно обновляется, так как в течение 4 дней обычно полностью исчезает. Молекулярный кислород обнаружить не удалось, но есть предположение, что он всё же присутствует в атмосфере.

Солнечная система. Что о ней известно? Названия планет

В древние времена люди считали, что центром Вселенной является Земля, а вокруг нее вращается Солнце, Луна и другие планеты. Первым человеком, предложившим гелиоцентрическую систему мира, был древнегреческий астроном Аристарх Самосский, живший в III веке до нашей эры. Однако популярности учение не снискало. Гелиоцентрическая система получила развитие лишь по прошествии почти 1800 лет в трудах польского ученого Николая Коперника. В 1543 году он сумел доказать, что Земля вращается как вокруг своей оси, так и вокруг Солнца, подобным образом ведут себя и другие планеты.

Николай Коперник. Фото: Wikimedia

В доисторическую эпоху были открыты Меркурий, Венера, Земля, Марс, Юпитер и Сатурн. Все планеты, кроме Земли, были названы в честь древнеримских богов: торговли, любви, войны, верховного бога-громовержца и времени. Об Уране узнали лишь в 1781 году благодаря английскому астроному Уильяму Гершелю, который наградил свое открытие именем бога неба. Нептун, названный в честь бога морей, своим открытием в 1846 году обязан немецким астрономам Иоганну Готтфриду Галле и Генриху Луи д’Арре, а Плутон получил звание «Девятой планеты» в 1930 году благодаря американцу Клайду Уильяму Томбо. Имя планете предложила школьница из Оксфорда Венеция Берни. Она решила, что древнеримский вариант имени греческого бога подземного царства подойдет для далекой и холодной планеты лучше всего.Название планеты Земля же в прямом смысле означало «грунт»​, причем на всех языках — «Terra», «Earth»​. Солнце. Фото: Wikimedia

В наши дни мало кто будет спорить с тем, что Солнечная система входит в состав галактики Млечный путь. Подавляющая часть всей массы системы (около 99,86%) приходится на центральную звезду Солнце, которая притягивает силой своей тяжести все прочие космические объекты системы. Примечательно, что 99% оставшейся массы сосредоточено в планетах-гигантах: Юпитере, Сатурне, Уране и Нептуне.

Млечный путь. Фото: Wikimedia/NASA

Все объекты Солнечной системы, вращающиеся вокруг Солнца, официально делят на три категории: планеты, карликовые планеты и малые тела Солнечной системы. В категорию так называемой внутренней области Солнечной системы входят планеты Земной группы: Меркурий, Венера, Земля вместе с Луной, Марс со спутниками Фобос и Деймос, а также расположенная в поясе астероидов карликовая планета Церера.

Планеты Земной группы. Фото: Wikimedia

За поясом астероидов следует внешняя область Солнечной системы, к которой относятся Юпитер, Сатурн, Уран и Нептун вместе со всеми своими кольцами и спутниками, а также кометы, отдаленные астероиды и карликовые планеты, в число которых входит и Плутон.

Астероиды, сближающиеся с Землёй

Основная статья: Астероиды, сближающиеся с Землёй

Астероиды, сближающиеся с Землёй — астероиды, чьи орбиты проходят вблизи орбиты Земли или пересекают её. Основным классифицируемым параметром у околоземных астероидов является расстояние от Солнца в перигелии (q), которое у таких астероидов меньше 1,3 а.е. Такие астероиды ещё иногда называют околоземными астероидами, поскольку их орбиты располагаются в относительной близости от земной орбиты. Всего выделено 4 группы околоземных астероидов в зависимости от расположения орбит по отношению к земной орбите: Атиры, Атоны, Аполлоны и Амуры. Согласно сложившейся традиции, все группы околоземных астероидов были названы в честь своего первого открытого представителя, за исключением Амуров, первым открытым представителем которых является астероид (433) Эрос. Следует также отметить, что по классификации центра малых планет астероиды группы Атиры рассматриваются как подгруппа астероидов группы Атона с афелиями внутри орбиты Земли. Наиболее известным астероидом этого класса является астероид (99942) Апофис.

  • Атиры — орбиты полностью лежат внутри земной орбиты (расстояние до Солнца в афелии (Q) меньше перигелийного расстояния Земли, Q<0,983a. e.{\displaystyle Q<0{,}983\,{\text{a. e.}}}). К этой группе относятся все астероиды, чьи орбиты лежат внутри земной, в частности, астероиды, движущиеся по орбитам вблизи Меркурия и Венеры. Одним из наиболее известных астероидов этого класса является астероид (163693) Атира.
  • Атоны — пересекают земную орбиту с внутренней стороны (расстояние до Солнца в афелии больше перигелийного расстояния Земли, Q>0,983a. e.{\displaystyle Q>0{,}983\,{\text{a. e.}}}, но большая полуось (a) ещё меньше земной a<1a. e.{\displaystyle a<1\,{\text{a. e.}}}). Орбиты этих астероидов большей частью по-прежнему лежат внутри земной орбиты, но уже начинают пересекаться с ней вблизи своих афелиев. Одним из наиболее известных астероидов этого класса является астероид (2062) Атон.
  • Аполлоны — пересекают земную орбиту с внешней стороны (расстояние до Солнца в перигелии меньше, чем афелийное расстояние Земли q<1,017a. e.{\displaystyle q<1{,}017\,{\text{a. e.}}}, но большая полуось уже больше земной a>1a. e.{\displaystyle a>1\,{\text{a. e.}}}). Орбиты этих астероидов большей частью уже лежат снаружи земной орбиты, но теперь начинают пересекаться с ней вблизи своих перигелиев. Одним из наиболее известных астероидов этого класса является астероид (1862) Аполлон, также астероиды этого класса (162173) Рюгу и (101955) Бенну исследовались с помощью АМС.
  • Амуры — орбиты полностью лежат снаружи земной орбиты (их перигелий больше афелия Земли, но меньше 1,3 а.е., 1,017a. e.<q<1,3a. e.{\displaystyle 1{,}017\,{\text{a. e.}}<q<1{,}3\,{\text{a. e.}}}). К этой группе также относятся астероиды, движущиеся вблизи Марса, обладающие большим эксцентриситетом. Эти астероиды не пересекают земную орбиту, но вследствие гравитационных возмущений со стороны планет могут перейти в группу Аполлона. Одним из наиболее известных астероидов этого класса является астероид (1221) Амур. Сюда же входит астероид (433) Эрос, который является единственным околоземным астероидом этого класса, исследованным с помощью АМС.

Среди околоземных астероидов отдельно выделяют астероиды, сближающиеся с Землёй на расстояние менее 0,05 а.е. Считается, что такие астероиды потенциально опасны, так как несут угрозу столкновения с нашей планетой.


С этим читают