Из чего состоит солнце

Карта поверхности Солнце

Нажмите на изображение, чтобы его увеличить


Положение и движение Солнца

  • Солнце и Земля;
  • Солнце и Луна;
  • Угол наклона Солнца: Как и почему;
  • Орбита Солнца;
  • Где находится Солнце;
  • Солнечное созвездие;
  • Где встает Солнце;
  • Вращается ли Солнце;

Строение Солнца

  • Из чего состоит Солнце;
  • Фотосфера;
  • Хромосфера;
  • Корона Солнца;
  • Переходный слой;
  • Гелиосфера;

Особенности Солнца

  • Солнечный цикл;
  • Магнитное поле Солнца;
  • Солнечные пятна;
  • Факелы;
  • Протуберанцы;
  • Флоккулы и волокна;
  • Спикулы;
  • Корональные дыры;
  • Корональные петли;
  • Корональные стримеры;
  • Гранулы и супергранулы;
  • Солнечная радиация;
  • Солнечный ветер;

Общее

  • Эволюция Солнца;
  • Как образуется солнечная энергия;
  • Почему Солнце горячее;
  • Почему Солнце красное;

Ссылки

Объекты Солнечной системы
Карликовые планеты Плутон · Церера · Хаумеа · Макемаке · Эрида
Планеты Земной группы Меркурий · Венера · Земля · Марс
Газовые гиганты Юпитер · Сатурн · Уран · Нептун
Другие объекты Солнце · Астероиды · Пояс астероидов· Кометы· Метеоры и метеориты· Пояс Койпера и Облако Оорта· За пределами Солнечной системы

Строение Солнца в диаграмме

NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:

  • (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
  • (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
  • Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
  • Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
  • 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
  • Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
  • Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
  • Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
  • 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
  • Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
  • Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
  • Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
  • Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
  • Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
  • Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
  • X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
  • Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.

Положение и движение Солнца

  • Солнце и Земля;
  • Солнце и Луна;
  • Угол наклона Солнца: Как и почему;
  • Орбита Солнца;
  • Где находится Солнце;
  • Солнечное созвездие;
  • Где встает Солнце;
  • Вращается ли Солнце;

Строение Солнца

  • Из чего состоит Солнце;
  • Фотосфера;
  • Хромосфера;
  • Корона Солнца;
  • Переходный слой;
  • Гелиосфера;

Особенности Солнца

  • Солнечный цикл;
  • Магнитное поле Солнца;
  • Солнечные пятна;
  • Факелы;
  • Протуберанцы;
  • Флоккулы и волокна;
  • Спикулы;
  • Корональные дыры;
  • Корональные петли;
  • Корональные стримеры;
  • Гранулы и супергранулы;
  • Солнечная радиация;
  • Солнечный ветер;

Общее

  • Эволюция Солнца;
  • Как образуется солнечная энергия;
  • Почему Солнце горячее;
  • Почему Солнце красное;

Строение светила

Как выглядит Солнце и из чего состоит. В своей основе это многослойная плазменно-газовая сфера, внутренний объем которой можно разделить на несколько зон с различным составом, свойствами, поведением и характеристиками вещества.

Строение Солнца можно представить следующим образом:

  • ядро — гигантская термоядерная «печь», которая генерирует тепло и энергию в виде фотонов. Именно они несут свет на Землю. Радиус ядра не превышает четверти общего радиуса небесного светила; температура в центре солнца достигает 14 миллионов Кельвинов;
  • радиационная (излучающая) зона, имеет толщину около трехсот тысяч километров и характеризуется высокой плотностью. Здесь энергия медленно перемещается к поверхности. По сути это и есть область термоядерного синтеза;
  • конвективная зона, где энергия перемещается значительно быстрее на поверхность или в фотосферу;
  • над поверхностью начинается зона вихревых газов солнечной атмосферы.

Сферы и их особенности

Хромосфера — внешняя оболочка, окружающая фотосферу. Ее толщина составляет примерно 10 000 км, и она отличается неоднородной структурой. Корона — внешняя и потому необычайно разреженная часть атмосферы, которую можно увидеть в период полного затмения. Имеет температуру более миллиона градусов.

Атмосфера подвержена постоянным резонансным колебаниям примерно каждые 5 минут. Распространяясь в верхних слоях атмосферы, волны передают им часть энергии, газы других слоев (хромосферы и короны) нагреваются. Поэтому верхняя часть фотосферы на Солнце оказывается самой «холодной».

Внимание! Плотность, температура и давление внутри гигантского термоядерного реактора уменьшаются по мере удаления от ядра.

Температура солнца в градусах различна в каждой из его сфер, так температура Солнца на поверхности составляет 5 800 градусов Цельсия, солнечной короны – 1 500 000, температура ядра солнца – 13 500 000.

Сила излучения

Мощность излучения очень большая: примерно 385 миллиардов мегаватт. Почти мгновенно 700 млн тонн водорода превращаются в 695 млн тонн гелия и 5 млн тонн гамма-лучей. Из-за высокой температуры звезды синтез, трансформирующий водород в гелий протекает с формированием солнечной энергии и излучением потока фотонов. Такой поток принято называть солнечным ветром, который распространяется со скоростью более 450 км/с.

Благодаря излучению поддерживается жизненные процессы на Земле, определяется ее климат. Формально свечение имеет практически белый цвет, однако, приближаясь к земной поверхности, становится желтого оттенка — это результат рассеивания света и поглощения коротковолновой части спектра атмосферой Земли.

Солнечный ветер имеет и другое определение — корональные выбросы массы (КВМ), представляющие собой колоссальный фронт радиоактивных ионизированных заряженных частиц, направляемых в космическую бездну и испепеляющих все на своем пути.

Разогнавшись до невероятных скоростей газы также генерируют сильные магнитные поля, которые при вращении звезды сталкиваются и вырываются с поверхности.

В космическое пространство извергаются магнитные петли огромного размера. Некоторые из этих образований настолько большие, что Земля смогла бы пройти через них с огромным запасом.


От них отрывается и уносится на огромной скорости сгусток высокорадиоактивной ионизированной плазмы. Это и есть КВМ. Он может повредить космические аппараты и даже угрожать жизни астронавтов. Такой убийственный фронт иногда достигает Земли за 16 часов. Для сравнения: на быстром космическом корабле полет занял бы годы, а солнечному ветру на этот путь нужны всего лишь считанные часы.

Важно! Солнечный ветер представляет смертельную угрозу для существования всего живого на нашей планете. Если бы не было у Земли магнитного поля, создающего непроходимый барьер для частиц, жизнь прервалась бы за пару секунд.

Лучистый перенос

Внешняя граница ядра находится приблизительно в 150 000 км от центра Солнца (0,2 радиуса). В этой зоне температура снижается до 9 млн градусов. При последующем охлаждении реакции протон-протонного цикла прекращаются — у протонов недостает кинетической энергии для преодоления электростатического отталкивания и слияния в ядро дейтерия. Реакции CNO-цикла там тоже не идут, поскольку их температурный порог даже выше. Поэтому на границе ядра солнечный термояд сходит на нет.

Солнечные пятна Трехмерная модель солнечного пятна, построенная на основе данных, полученных с помощью одного из инструментов (Michelson Doppler Imager) космической обсерватории SOHO (Solar and Heliospheric Observatory). Верхняя плоскость — это поверхность Солнца, нижняя плоскость проходит на глубине 22 тысячи километров. Вертикальная плоскость сечения продолжена до 24 тысяч километров. Цветами обозначены области с различной скоростью звука (по мере убывания — от красной к синей и черной). Сами пятна — это места выхода в солнечную атмосферу сильных магнитных полей. Они видны как участки с пониженной температурой на поверхности Солнца, обычно они окружены более горячими активными областями — факелами. Количество пятен на Солнце изменяется с периодом в 11 лет (чем их больше — тем больше активность Солнца).

Ядро окружено мощным сферическим слоем, который заканчивается на вертикальной отметке в 0,7 солнечного радиуса. Это лучистая зона (англ. radiative zone). Она заполнена водородно-гелиевой плазмой, плотность которой по мере движения от внутренней границы зоны к внешней сокращается в сотню раз, от 20 до 0,2 г/см3. Хотя внешние плазменные слои холоднее внутренних, температурный градиент там не настолько велик, чтобы возникли вертикальные потоки вещества, уносящие тепло от нижних слоев к верхним (такой механизм теплопереноса называется конвекцией). В надъядерном слое никакой конвекции нет и быть не может. Выделяемая в ядре энергия проходит сквозь него в виде квантов электромагнитного излучения.

Как это происходит? Рожденные в центре ядра гамма-кванты рассеиваются в его веществе, постепенно теряя энергию. До границы ядра они добираются в виде мягкого рентгена (длина волны порядка одного нанометра и энергия 400−1300 эВ). Тамошняя плазма для них почти непрозрачна, фотоны могут преодолеть в ней расстояние всего лишь в доли сантиметра. При столкновении с ионами водорода и гелия кванты отдают им свою энергию, которая частично уходит на поддержание кинетической энергии частиц на прежнем уровне, а частично переизлучается в виде новых квантов большей длины. Так что фотоны постепенно диффундируют через плазму, погибая и рождаясь вновь. Блуждающие кванты легче уходят вверх (где вещество менее плотно), нежели вниз, и поэтому лучистая энергия перетекает из глубин зоны к ее внешней границе.

Поскольку в зоне лучистого переноса вещество неподвижно, она вращается вокруг солнечной оси как единое целое. Но лишь до поры до времени. Во время перемещения к поверхности Солнца фотоны проходят все более длинные дистанции между столкновениями с ионами. Это означает, что разница в кинетической энергии излучающих и поглощающих частиц все время возрастает, ведь солнечная материя на бóльших глубинах горячее, чем на меньших. В результате плазма дестабилизируется и в ней возникают условия для физического перемещения вещества. Зона лучистого переноса переходит в конвективную зону.

Солнечная корона Фотография солнечной короны, сделанная во время полного солнечного затмения 26 февраля 1998 года. Корона — это внешняя часть солнечной атмосферы, состоящая из разреженного водорода, разогретого до температуры порядка миллиона градусов Цельсия. Цвета на снимке — синтетические, и обозначают уменьшающуюся яркость короны по мере удаления от Солнца (синее с розовым пятно в центре — это Луна).

Зачем лететь

Изучение Солнца жизненно важно для человечества. Прежде всего, из-за магнитных бурь

Их интенсивность четко привязана к 11-летнему циклу активности Солнца. Сильная магнитная буря может вызвать сбой в работе средств связи, увеличению количества автомобильных катастроф, ухудшению состояния здоровья метеозависимых людей. За период наблюдения ученые выделяют несколько особенно сильных явлений этого порядка:

  • 1859 год, «Кэррингтона». Телеграф в Северной Америке и Европе перестал работать, появилось северное сияние на всей планете.
  • 13.03.1989 года, «квебекская». Произошли масштабные сбои в обеспечении электроэнергией Квебека. Нарушилась высокочастотная связь по всему миру. Северное сияние было видно в Мексике и Симферополе.
  • 23.07. 2012 года, по силе приравнивается к «Кэррингтону»

Угловой диаметр Солнца

Угловой диаметр объекта — это угол между линиями, идущими от наблюдателя к диаметрально противоположным точкам на его краях. В астрономии он измеряется в минутах (′) и секундах (″). Под ним подразумевается не плоский угол, а телесный (объединение всех лучей, выходящих из точки). Угловой диаметр звезды равен 31′59″.

В течение суток Солнце меняет свои размеры (в 2,5-3,5 раза). Однако, такая видимость является лишь психологическим феноменом. Иллюзия восприятия заключается в том, что угол, под которым видно Солнце, не меняется в зависимости от его положения на небосводе.

Однако небо представляется человеку не полусферой, а куполом, который по краям примыкает к горизонту. Поэтому проекция звезды на его плоскость кажется различной по величине.

Существует и другое объяснение. Все предметы по мере приближения к горизонту становятся меньше. Однако Солнце не меняет своих размеров. Из-за этого кажется, будто оно становится больше. Интересный психологический эффект легко проверть: стоит измерить диаметр Солнца с помошью мизинца. Его размеры в зените и на горизонте будут одинаковы.

Из каких элементов состоит Солнце?

Если бы у вас получилось разложить звезду на части, и сравнить составные элементы, вы бы поняли, что состав Солнца представляет собою 74% водорода и 24% гелия. Также, Солнце состоит из 1% кислорода, и оставшийся 1% — это такие химические элементы таблицы Менделеева, как хром, кальций, неон, углерод, магний, сера, кремний, никель, железо. Астрономы полагают, что элемент тяжелее гелия – это металл.

Протон-протонный цикл происходящий в недрах Солнца

Как появились все эти элементы Солнца? В результате Большого Взрыва появились водород и гелий. В начале становления Вселенной, первый элемент, водород, появился из элементарных частиц. Из-за большой температуры и давления условия во Вселенной были как в ядре звезды. Позже, водород синтезировался в гелий, пока во Вселенной была высокая температура, необходимая для протекания реакции синтеза. Существующие пропорции водорода и гелия, которые есть во Вселенной сейчас, сложились после Большого Взрыва и не изменялись.

Остальные элементы Солнца созданы в других звездах. В ядрах звезд постоянно происходит процесс синтеза водорода в гелий. После выработки всего кислорода в ядре, они переходят на ядерный синтез более тяжелых элементов, таких как литий, кислород, гелий. Многие тяжелые металлы, которые есть в Солнце, образовывались и в других звездах в конце их жизни.

Образование самых тяжелых элементов, золота и урана, происходило, когда звезды, во много раз больше нашего Солнца, детонировали. За доли секунды образования черной дыры, элементы сталкивались на большой скорости и образовывались самые тяжелые элементы. Взрыв раскидал эти элементы по всей Вселенной, где они помогли образоваться новым звездам.

Наше Солнце собрало в себя элементы, созданные Большим Взрывом, элементы от умирающих звезд и частицы появившихся в результате новых детонаций звезд.

Общая информация


Луна и Солнце. Вид с Земли.

Земля удалена от Солнца на расстояние 1,5·108 км, это и есть примерная величина астрономической единицы. На небе размер диска Солнца почти не отличается от Луны и составляет немногим больше половины градуса.

Солнце, как и любая звезда, представляет собой газовый шар, а значит, не имеет четко определенной границы, которая разделяла бы различные агрегатные состояния вещества. За условную границу поверхности Солнца принимают фотометрический край – точку перегиба в распределении яркости Солнца рядом с лимбом (резко очерченным краем). Расстояние от центра до таким образом определенной границы и есть условный радиус Солнца. Он равен 696 тысячам км. Условная поверхность Солнца близка к ее фотосфере – верхнему слою самой глубокой части атмосферы. Температура фотосферы минимальна, а газы наиболее непрозрачны. Благодаря этому видимый край Солнца резок и хорошо заметен.

Одна из главных характеристик любой звезды – масса – у Солнца равняется 2·1030 кг. Эта величина настолько огромна, что составляет массу практически всей Солнечной системы. Вклад всех остальных объектов – всего лишь около 1%. Средняя плотность вещества Солнца – 1,41 г/см³.

Солнце излучает колоссальное количество энергии во всех диапазонах. Еще одна важнейшая звездная характеристика – светимость – для нашей звезды составляет 3,828·1026 Вт. Солнце синтезирует свою энергию в недрах, где происходят термоядерные реакции. Однако при прохождении сквозь космическое пространство, особенно через атмосферы планет, большая часть энергии теряется. Мощность энергии, достигающей нашей планеты, – всего 1000 Вт/м². Но и эта часть энергии – колоссальный ресурс, необходимый для существования жизни, поддержания благоприятного климата, фотосинтеза растений и выработки кислорода, а также альтернативный источник электроэнергии для человека.

Солнце – одна из самых ярких близких к нам звезд, четвертая по яркости. Его абсолютная звездная величина равна +4,83m.

Средняя температура на поверхности Солнца составляет около 6 тысяч кельвинов. Она увеличивается с глубиной, и в недрах достигает 10 миллионов кельвинов.

Основные элементы, из которых состоит Солнце – это водород (70%) и гелий (28%). Остальные элементы составляют всего 2%, и в эту часть входят кислород, углерод, азот, сера и множество металлов. Спектральный состав Солнца говорит нам о том, что оно является типичной звездой главной последовательности, а также относится к желтым карликам (спектральный класс G). Видимое солнечное излучение имеет непрерывный спектр с десятками тысяч линий поглощения.

Наша звезда расположена на периферии Млечного Пути, в рукаве Ориона (Местном рукаве). Солнечная система находится около его внутреннего края, в Местном межзвездном облаке, имеющем высокую плотность, находящемся в более разреженном Местном пузыре – области горячего межзвездного газа. Расстояние от Солнца до центра Галактики – 26 тысяч световых лет. Солнце вместе со своей системой движется вокруг центра Млечного Пути со скоростью 217 км/с и обращается полностью примерно за 250 млн. лет.

Предполагается, что Солнце возникло после взрыва одной или даже нескольких сверхновых, произошедшего около 4,6 млрд. лет назад. В пользу этого предположения говорит высокое содержание металлов в звезде. Они могли образоваться в результате ядерных реакций, сопровождавших взрыв. Жизнь Солнца должна продолжаться примерно 10 миллиардов лет. В настоящее время звезда «прожила» почти половину своей жизни. Впоследствии оно должно превратиться в красного гиганта, поглотив близлежащие планеты, а после вновь сжаться, став белым карликом. Масса Солнца недостаточно велика для того, чтобы его жизненный цикл завершился взрывом сверхновой.

Солнце обладает очень мощным магнитным полем, напряженность которого подвержена временным изменениям. Направление поля тоже меняется с периодом в 11 лет. Изменения магнитного поля порождают различные эффекты, такие как солнечные вспышки, пятна, магнитные бури, полярные сияния и геомагнитные бури на Земле и другие. Совокупность всех этих явлений называется солнечной активностью.

Скорость вращения

Нетвердое тело вращается совсем не так, как планеты. У разных слоев звезды свои скорости вращения. Самая большая – в районе экватора, один оборот занимает около 25 дней. Чем дальше расположен слой от экватора, тем скорость его вращения меньше. Так, полюса совершают один оборот примерно за 36 дней. Именно поэтому светило обладает миллионами магнитных полюсов, а не двумя, как наша планета.

Внимание! Восход и заход в тропических странах вблизи экватора происходит словно по графику — в одно время, каждый день, в течение года. Поэтому сутки в тропиках делятся поровну: продолжительность дня и ночи равна 12 часам.

Строение Солнца

Строение Солнца

В самом центре тела нашей звезды расположено ядро. Оно занимает четверть радиуса Солнца. Именно тут «бушуют» термоядерные реакции, порождая видимое нам излучение. Вследствие огромных размеров, плотность вещества внутри светила огромна – в 150 раз больше плотности воды.

Далее находится зона лучистого переноса, по которой хаотично движутся фотоны. Удивительно, что в среднем достигают они следующего слоя за 170 тысяч лет.

Конвективная зона – внешняя область Солнца, где движение плазмы происходит за счёт явления конвекции (тёплое устремляется наверх и остывает, холодное идёт вниз для нагревания). Между этими двумя областями располагается тонкий слой под названием «тахоклин» – область возникновения магнитного поля.

Солнечная атмосфера трёхслойная: хромосфера, переходная часть, корона. Видимая глазу поверхность глубиной несколько сотен километров, носит название – фотосфера.

Поверхность

Поверхность Солнца

Температура фотосферы колеблется в пределах: от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Скорость вращения составляющего её газа неравномерна. 24 дня в области экватора и 30 на полюсах. Красный цвет хромосферы можно различить только во время полного солнечного затмения.

Солнечные пятна, факелы и гранулы

Солнечная поверхность по уровню свечения неоднородна и имеет менее яркие области, называемые солнечными пятнами. Продолжительность существования, которых варьируется от нескольких дней до нескольких недель. Необходимо отметить, что есть пятна, превышающие диаметр Земли.

Солнечные пятна Интересный факт: солнечные пятна являются областями сверхмощных вспышек, максимально сильно воздействующими на нашу планету.


Кроме того, на поверхности Солнца расположены:

  • Факелы – участки повышенной яркости, – «родные братья» солнечных пятен, часто предшествующие или последующие их возникновению;
  • Гранулы, размером примерно в тысячу километров, покрывающие собой всю фотосферу и различимые обычным глазом;
  • Супергранулы, габаритами в 35 000 км, тоже целиком обволакивающие всю поверхность светила. Но проявляют они себя лишь с помощью физических эффектов.

Внутри Солнца

Согласно, гипотезы Ханса Бете, внутри Солнца постоянно происходят реакции превращения водорода в гелий с большим выделением тепловой энергии. Своего рода – действующая 5 млрд. лет, водородная бомба. С запасом ещё на такой же срок.

Три года назад учёные Даремского университета из Великобритании выдвинули гипотезу поглощения вещества тёмной материи нашим светилом. Якобы она служит переносчиком энергии внутри Солнца. Ответ на вопрос можно будет получить, проведя исследования на базе самого большого ускорителя – адронного коллайдера. Для этого необходимо иметь хотя бы частицу тёмной материи.

О температурных значениях

Температура Солнца, особенно в центральной части звезды, является крайне высокой. Её значение составляет 14 млрд. градусов. Дело в том, что в ядерной части светила наблюдаются существенные термические реакции, при которых происходит деление ядер в условиях повышенного давления. Это провоцирует выделение одного ядра и вместе с ним огромного количества энергии.

Если изучать вопрос, какая температура на Солнце, с логической точки зрения, по мере углубления она должна становиться всё больше и больше, и происходит это резко. Однако определить точные показатели можно только в теории. Если рассматривать эти колебания послойно, можно сделать следующие отметки:

  • корона имеет среднюю температуру, составляющую 1 500 000 градусов;
  • ядро является наиболее «горячим», приблизительный показатель у его основания составляет 15 500 000 градусов по Цельсию;
  • поверхность около 5 500° С.

Но это неточный ответ на вопрос, какая температура на Солнце. Дело в том, что в настоящее время большое количество учёных из разных стран мира занимаются проведением исследований, в отношении определения строения светила. В земных условиях они не прекращают попыток формирования явления термоядерного синтеза для получения информации о поведении плазмы в естественных условиях.

Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.

Внутреннее строение

Из-за неравномерного распределения вещества в подфотосферной области невозможно узнать точную картину строения Солнца. Поэтому для того, чтобы иметь представление об условиях в его недрах, предполагают, что вещество в нем распределено равномерно. Наиболее близкие к реальному Солнцу условия такая модель дает в средней точке, на глубине, равной половине радиуса. Именно для этой точки определены средние значения плотности (1,41 г/см³), давления (6,6·1013) и ускорения свободного падения (1,37·102). Температура в средней точке достигает 2,8 млн. кельвинов.

С глубиной температура и давление в Солнце увеличивается и вблизи центра достигает десятка миллионов кельвинов и порядка нескольких сотен миллиардов атмосфер. При таких колоссальных температурах атомы и их частицы разгоняются до невероятно высоких скоростей. Из-за высокой плотности частицы постоянно сталкиваются с фотонами и между собой. Из-за этого атомы теряют свои внешние оболочки и остаются только ядра атомов. Их размеры уменьшаются на несколько порядков (от 10-10 до 10-15 м). Такое состояние называется высокой степенью ионизации, а газообразное вещество в нем – плазмой. Частицы плазмы постоянно сильно сталкиваются между собой, при этом происходят термоядерные реакции.

В недрах Солнца идут термоядерные реакции нескольких типов. Основные цепочки реакций – водородный и углеродный циклы. Первый вид называют также протон-протонной цепочкой, поскольку суть этого процесса состоит в столкновении протонов. Такая цепочка реакций приводит к превращению атомов водорода в атомы гелия. Наибольшая часть солнечной энергии синтезируется именно в ходе водородного цикла, поэтому он является важнейшим типом реакций в ядре Солнца. Второй тип – углеродный цикл – также приводит к превращению протонов в гелий (альфа-частицу). Но эти реакции происходят, только если в окружающей среде находится углерод. Этот цикл – важнейший источник энергии для звезд, масса которых чуть больше солнечной, однако у самого Солнца он обеспечивает лишь 1-2% синтеза.

Во время термоядерных реакций в ядре Солнца кроме непосредственно энергии образуются нейтрино – частицы, практические не взаимодействующие с веществом. Они проходят через звезду с околосветовой скоростью и практически не поглощаются веществом, распространяясь в космосе. Именно поэтому с помощью регистрации их потоков можно получить непосредственные данные об условиях в солнечных недрах.

Таким образом, тепловая энергия Солнца синтезируется только в ее ядре, а остальная ее часть нагревается посредством этом энергии, проходя постепенно сквозь все слои до фотосферы, где она выделяется в виде солнечного света.

С увеличением расстояния от ядра уменьшаются плотность и температура, а также прекращается углеродный цикл. На уровне 0,3 радиуса Солнца перестает идти и водородный цикл, поскольку здесь происходит резкое падение температуры и плотности. Выше этого уровня энергия передается только за счет теплопроводности между слоями. Эта область звезды простирается до 0,7 солнечного радиуса и называется зоной лучистого переноса.

Выше уровня в 0,7 радиуса энергия переносится за счет движения вещества. Верхние слои сильно охлаждаются из-за постоянного оттока излучения во внешнюю среду. Следовательно, газ становится менее ионизированным, а из-за этого уменьшается его непрозрачность. Возникают условия для конвекции – перемешивание холодных слоев с более горячими и их нагревание. Эта конвективная зона располагается до начального уровня атмосферы Солнца.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

С этим читают